
A Simple Concept for Distributed Computing in Computer
Graphics

Bernd Oberknapp

Sonderforschungsbereich 256
Institut für Angewandte Mathematik

Universität Bonn
bo@iam.uni-bonn.de

Konrad Polthier

Sonderforschungsbereich 288
FB 3 Mathematik, MA 8-3

Technische Universität Berlin
polthier@math.tu-berlin.de

Abstract

We propose a simple concept for distributed comput-
ing. In a first stage this allows stand-alone programs
to communicate and exchange data across computer
networks. Existing stand-alone programs need very
little adaptation to participate in such a system of
(temporarily) connected programs. In a second stage
the concept is extended to allow remote-objects and
remote-methods. All network related functionality
is located in the network manager, therefore adapted
stand-alone programs may still run stand-alone with-
out the network manager.

CR Descriptors: C.2.4 [Computer-Communica-
tion Networks]: Distributed Systems — Distributed
applications; I.3.2 [Computer Graphics]: Graph-
ics Systems — Distributed/network graphics; I.3.4
[Computer Graphics]: Graphics Utilities — Appli-
cation packages;

1 Working Together and Distributed
Computing

In the mathematical community exist a number of ex-
cellent software packages developed at different sites
in the world. Each package provides fairly complete
functionality for specific mathematical problem areas
but surely none of them is universal or has the aim to
be.

Our net-manager concept is a general approach to
combine the functionality of specialized stand-alone
programs to a net of packages. Inside the net different
packages may have connections to others, exchange
messages and transport arbitrary data through infor-
mation channels (figure 1). The programs may run
on different computers with their display directed to
different terminals, therefore several people may use

the programs at the same time and exchange infor-
mation with other programs through the information
channels.

An important feature of the concept is that pro-
grams need very little adaptation for working inside
the net and that they still have the ability to run stand-
alone even though they are used as modules in the
net. This is a major difference to other net concepts
as for example the network system in AVS [AVS89]
or PVM [PVM94] (see section 5).

The net-manager was created to extend the capabil-
ities of GRAPE [Gra95], [OP94], the object-oriented
GRAphics Programming Environment developed at
the Sonderforschungsbereich 256 in Bonn (see sec-
tion 6.1), by adding remote objects (figure 2) and
remote methods. Objects in the data hierarchies of
GRAPE programs running simultaneously on differ-
ent computers, e.g. a c grape on a mainframe for large
computations and a g grape on a graphic machine for
post-processing (this can of course be the same ex-
ecutable running on both machines), can be linked
together using the net-manager. The c grape per-
forms large computations and updates the hierarchy
node of the g grape after each computation cycle or
on request from the g grape. The user at the graphic
machine may post-process the data as usual when
working with GRAPE, i.e. apply rotation, clipping
and different display methods on the data set (fig-
ure 3). But he has to be aware that the data is updated
from time to time by the computation process on the
mainframe, in this sense the object at the hierarchy
node of the g grape is a remote object. The user can
control the computation on the mainframe by sending
methods in g grape to the node which represents the
remote object, these remote methods are executed by
c grape.

This kind of application which allows the paralleli-
sation and distribution of computations was the initial

Data Generator

GRAPE
Renderer

PDE Solver

Net-Manager

Figure 1: Information Channels. The net-manager creates and supervises connections, it has a command
connections to every program running under its control. The programs exchange data directly through infor-
mation channels, this enables them to exchange arbitrary data. The connections are created by the net-manager
temporarily on request. The four programs shown in this figure are just examples for possible stand-alone
programs connected via the net-manager.

Graphic Workstation
graphical postprocessing

Mainframe
numerical calculations

@@@@@@@@@@@
@@@@@@@@@@@
@@@@@@@@@@@
@@@@@@@@@@@
@@@@@@@@@@@
@@@@@@@@@@@
@@@@@@@@@@@

The geometry object
 of one data hierarchy

is associated with
a node in a different

hierarchy

Figure 2: Remote Objects. Two separate programs on a graphic machine and a mainframe have the same
geometric object in their data hierarchies. In the example the object physically belongs to the mainframe and
is a remote object for the graphic machine, but the user on the graphic side sees no difference when accessing
the object for display or other purposes.

reason to start working on the net-manager. The ap-
plication of linking separate main programs to a net
was the first stage in this development, it came out
as a by-product of the more general aim of allow-
ing remote objects and methods. But from the user’s
point of view linking separate programs is the first
demand he makes on a net-manager: without bigger
changes he can work with the programs he is used to
at a higher level of interactivity. After having gained
experience with this kind of distributed computing
and working together of programs the user will much
more efficiently apply the concept of remote objects
and remote methods in an environment like GRAPE.

Let’s now discuss the working principles of the
net-manager in more detail. The description is first
restricted to the linking of separate programs, remote
objects and methods are discussed in the last section.

2 The Net-Manager Concept

The net-manager was designed with these aims in
mind:

� Existing programs should need only small adap-
tations for working inside the net, the net specific
parts should be encapsulated from the rest of the
program.

� Programs adapted for the net-manager should
still be able to run stand-alone without the net-
manager in the background.

� Programs should be able to exchange arbitrary
data, not only some predefined data types the
net-manager knows.

� It should be possible to run programs stand-alone
first and then start the net-manager or connect to
an already running net-manager.

� The concept should be extendable to hierarchies
of nets with local net-managers on different ma-
chines.

� The net-manager should be easily configurable
for the user.

To realize these aims we developed the following
concept for the net-manager:

� The net-manager is the control instance for build-
ing and maintaining the net of programs. Pro-
grams can be added to and removed from the net
by starting them or telling them to quit, the ma-
chines they run on and the displays they use can
be configured. Information about the available
programs, machines and displays is provided by
the user.

� Programs running under the control of the net-
manager communicate with the net-manager
over a permanent command connection which is
created when the program is started by the net-
manager or when a running program connects
itself to the net for the first time and deleted
when the program is disconnected from the net.

� To send or receive information programs can cre-
ate input and output ports which are registered
with the net-manager. Each port has a fixed type
which determines what kind of data it is able to
handle.

� The net-manager coordinates and supervises all
data exchange in the net. The net-manager cre-
ates information channels between programs by
connecting their input and output ports. The port
types are used to determine which connections
are valid. The programs are informed that their
ports are connected, but the knowledge about
the net of connections is kept within the net-
manager.

The programs only have information about the net-
manager and their own ports, they don’t know any-
thing about the other programs and the connections in
the net, not even where their own ports are connected
to.

If a program wants to write some data to one of its
output ports it has to ask the net-manager where the
data should be send. The net-manager will check if
the program the port is connected to is able to receive
the data and tell it to listen to the corresponding input
port. The address of this port is returned to the sending
program which then is able to write the data. The net-
manager is notified after the data transfer has been
completed. During the transfer the net-manager is
free to handle other requests.

The way the data transfer between programs is han-
dled is essential to make the adaptation of new pro-
grams to the net-manager as simple as possible: pro-
grams don’t communicate with each other directly
but only with the net-manager, therefore they don’t
have to supervise their connections or to manage in-
formation about the programs they are connected to.
They just set up the control connection with the net-
manager and create their ports, the management of
the information channels is done by the net-manager.

On the other hand the data is transferred directly
between the programs — despite the fact that they
know almost nothing about their connections. There-
fore the net-manager doesn’t need to know which data
format is used by the programs. This makes it possi-
ble to exchange arbitrary data. The net-manager only

light surf trans manag opts Exit

(C)1993 SFB256 Grafiklabor Uni Bonn

GRAPE
Version 4.1

"main"
Scene

"Grape In"
NetScene

"Gergonne"
Geom2d

read st write st read gr write gr

Project: add Project: del

display methodsend method

I/O

switches

I 0.00000scene timeE

mark copy hardcopy

expand delete-one delete-all

Scene display method Scene dynamic method

scene-trans scene-suprop

copy-trans copy-suprop

0.00000main time

step < > 10# steps

Send Data Recv Data Status

Remote Disp Start Net

Display: carlotta

Machine: carlotta

Program: grape

Configure

Add Client Kill Client

Connect Clients

Client

Print Status

Exit Net

Server

grape

In 0 Grape Out 0 Grape

grape

In 0 Grape Out 0 Grape

Programs

light surf trans manag opts Exit

(C)1993 SFB256 Grafiklabor Uni Bonn

Diri Minimizer/Conjugater
Version 1.0

"main"
Scene

"Grape Out"
NetScene

"Gergonne"
Geom2d

read st write st read gr write gr

Project: add Project: del

display methodsend method

I/O

switches

I 0.00000scene timeE

mark copy hardcopy

expand delete-one delete-all

Scene display method Scene dynamic method

scene-trans scene-suprop

copy-trans copy-suprop

0.00000main time

step < > 10# steps

Send Data Recv Data Status

Remote Disp Start Net

Figure 3: Remote Objects in GRAPE. The computation process (top) is running on an SGI Challenge with
X11 control display, the graphical postprocessing (bottom, see color plates for color image) is done on an SGI
Indigo2. The same geometry is accessed in both data hierarchies.

needs to know that the ports of the programs are able
to handle the same data type.

Another advantage is that the data flow makes no
detour over the net-manager. This is important if two
programs run on one machine and the net-manager is
located on a different machine. In this case the data
can be transferred through a local connection or even
in memory.

Because programs only communicate with the net-
manager it is easily possible to extend the concept
to hierarchies of nets, for example with local net-
managers on different machines. In this case the
programs don’t have to be changed at all, only the
communication between the net-managers has to be
added and the management of the information chan-
nels within the net-managers has to be changed.

There are several ways the net-manager can be
used: it may be started first and then build up a net of
programs, or a single application may be started and
later, if necessary, the net-manager may be invoked to
connect the running program with others. The later
possibility is usually chosen when unforeseen situa-
tions occur in the currently running program, making
it necessary to perform actions on the data which are
supported only by other programs. In both cases the
command connection between the net-manager and
the application can be build without problems: the
one that is started first provides the other one with the
necessary information. This is more difficult if the
net-manager and the application are already running,
in this case the user has to tell the application where
it can find the net-manager to enable it to build up the
command connection.

Next we will take a look at our current implementa-
tion of the net-manager concept before the adaptation
of programs is explained.

3 Implementation of the Concept

The most important aspect of the implementation was
to design an interface between the network code and
the application which encapsulates all net specific
parts. This helps to keep the programs free from
(probably machine dependent) direct network func-
tions call and makes the adaptation to the net-manager
much easier.

The interface code has to be linked to the applica-
tion. Provided are functions for

� starting the net-manager if the program is run-
ning stand-alone,

� creating and deleting the command connection
to the net-manager,

� creating, deleting and handling input and output
ports and

� sending and receiving data.
If for example a program wants to write some data

to one of its ports it only has to call the function for
sending data with the port information as parameter.
This function handles the communication with the
net-manager, sets up the connection with the other
program and sends the data. The return value of the
function indicates if the transfer was successful.

The messages between the net-manager and the
programs are exchanged via sockets, as is the data
between programs. This is the only way information
can be exchanged between programs running on ar-
bitrary machines in the net. If programs run on the
same machine pipes or shared memory can be used.

For transferring messages between the net-manager
and the programs in a machine independent format
we use XDR [XDR], the external data representation
which is part of the RPC package developed by Sun
Microsystems. This format should also be used for the
data exchange between programs if they are running
on different hardware platforms.

An important point is how requests from the net-
manager are handled within the program. If the pro-
gram had to monitor its command connection for in-
coming messages it would be necessary to change
some important functions (e.g. the main event loop),
during long computations the program wouldn’t be
able to react to requests from the net-manager at all.
Therefore we decided to use a signal handler which is
invoked automatically by the operating system when-
ever a message from the net-manager arrives.

This is what happens when the program receives a
request: the operating system will interrupt the run-
ning program, save its current state and execute the
signal handler. Now the message can be evaluated,
if the program is for example told that a connection
to one of its ports was created it will store this in-
formation and send a reply to the net-manager. Then
the control is returned to the operating system which
resumes the execution of the program where it was
interrupted.

Like the interface code the signal handler is linked
to the program, it is installed when the command
connection to the net-manager is created.

The net-manager itself was implemented with the
aim to keep the network code encapsulated from the
user interface (currently we are using a simple graph-
ical interface implemented with the GRAPE library,
see figure 4). This was realized by using the same
mechanism like the programs to handle incoming re-

Display: server host

Machine: server host

Program: grape

Configure

Add Client Kill Client

Connect Clients

Client

Print Status

Exit Net

Server

grape

In 0 Grape Out 2 Off

evolver

In 0 Evo Out - -

geomview

In 0 Off Out - -

grape

In 0 Grape Out 1 Evo

Programs

Connect programs

Exit Net

Server

server host

OKCancel

server host gt carlotta

gabriel david nicolai

jackelen ncd6 ncd1

Display: none

Choose display
for client:

Programs

server host

OKCancel

server host gt carlotta

gabriel david nicolai

jackelen

Machine: none

Choose machine
for client:

Programs

grape

OKCancel

grape evolver geomview

Program: none

Choose program
to run:

Figure 4: Net-manager interface created with the GRAPE library. Other interface builders could also be used.

quests, a signal handler, and creating an interface to
the network code which contains functions for

� starting the net-manager,
� managing programs, machines and displays,
� adding programs to and removing them from the

net and
� connecting or disconnecting program ports.

Information about the available programs, ma-
chines and displays has to be provided by the user
in a configuration file. The net-manager is started by
reading the configuration file and installing the signal
handler.

4 Adapting Programs to Run within
the Net

As mentioned before only small changes have to be
made to an existing stand-alone program to adapt it for
running under the control of the net-manager: only the
function calls for creating the command connection
to the net-manager and for installing ports (one line
of code each) have to be added. The programm still
will be able to run without the net-manager, in this
case the added function calls just return without doing
anything.

Surely data conversion and transfer routines require

light surf trans manag opts Exit

(C)1993 SFB256 Grafiklabor Uni Bonn

Explicit
Version 3.1

"main"
Scene

"Evo Out"
NetScene

"bulb"
Geom2d

read st write st read gr write gr

Project: add Project: del

display methodsend method

I/O

switches

I 0.00000scene timeE

mark copy hardcopy

expand delete-one delete-all

Scene display method Scene dynamic method

scene-trans scene-suprop

copy-trans copy-suprop

0.00000main time

step < > 10# steps

Send Data Recv Data Status

Remote Disp Start Net

Figure 5: Surface Evolver [Bra92] and GRAPE. To adapt the evolver for the net-manager only 9 lines of code
had to be added to the evolver’s main program. This modified evolver version still runs stand-alone as before.

the most work when adapting a new program. We
have created functions to handle several geometric
data formats, for GRAPE objects a rather complete set
of transfer functions exists. They all use XDR [XDR]
to ensure that the data can be exchanged between
different hardware platforms without problems.

If a program is able to handle one of the supported
data formats only the command connection with the
net-manager has to be set up (to be able to send and
receive requests), and ports for exchanging data have
to be created. This can be done by adding a few lines
of code to the main program as for example:

/* private data structure */
struct geometry out;
/* port identifier */
int out id;

/* create command connection */
net connect to manager();
out id = net create outport(

&out, DT GEOMETRY);

The function net connect to manager creates
the command connection to the net-manager and
installs the signal handler — this has to be done
before any other net-manager function is called.
net create outport creates an output port and
links it with the address of the geometry structure,

the net-manager is informed that an output port of
type DT GEOMETRY was created.

Now the port can be connected by the net-manager
to some input port. The type identifier is used by
the net-manager to determine which connections are
valid, it is also used by the program interface code to
decide what kind of data has to be send:

net send data(&out);

Each data structure can be linked to exactly
one input port and any number of output ports.
net send data will write the structure to all con-
nected output ports, to select a single port for writing
the port id returned by net create outport can be
used.

The user isn’t restricted to using the predefined
datatypes. One possibility to transfer other types is to
convert them to one of the supported types and then
to use the existing transfer functions. Of course this
conversion has to be done every time data is send or
received.

A more elegant but also more difficult way is to
implement new data transfer functions. Functions
like net send data or net receive data which
manage the data transfer call functions for writing data
to or reading it from an XDR stream. For example the
write function could be replaced to handle the private
datatype:

light surf trans manag opts Exit

(C)1993 SFB256 Grafiklabor Uni Bonn

Explicit
Version 3.1

"main"
Scene

"Off Out"
NetScene

"cat_hel"
Geom2d

read st write st read gr write gr

Project: add Project: del

display methodsend method

I/O

switches

I 0.00000scene timeE

mark copy hardcopy

expand delete-one delete-all

Scene display method Scene dynamic method

scene-trans scene-suprop

copy-trans copy-suprop

0.00000main time

step < > 10# steps

Send Data Recv Data Status

Remote Disp Start Net

Figure 6: Geomview [Geo95] and GRAPE (see color plates for color image). An external Geomview module
was used for connecting Geomview to the net-manager.

int net write data(XDR *xdrp,
PORT *port)

f
xdrp!x op = XDR ENCODE;
if(port!type == DT PRIVATE) f
xdr private(xdrp, port!data);
xdrrec endofrecord(xdrp, 1);
return 1;

g
return 0;

g

Of course the read function of the receiving
program also has to be replaced, additionally the
DT PRIVATE identifier must be declared to the net-
manager in the configuration file. For complex data
structures the most difficult part is writing the xdr
function (xdr private) which converts the data be-
tween its C representation and the network format.

Before presenting the extensions we have added to
GRAPE by using the net-manager, we will discuss
the differences between our net-manager concept and
other network systems.

5 Differences to Other Net Concepts

There are some major differences between our net-
manager concept and dataflow packages like AVS

[AVS89] or Explorer. These systems use a network
manager to interactively combine modules to a pro-
gram. Data is modified at each module node and then
passed over connections to other nodes. The modules
have to be designed for working inside the network,
they are not able to run stand-alone. The datatypes
they can exchange are limited to types known by the
system, for AVS for example there is only one (very
complex) datatype. The conversion of an existing
stand-alone program to a module for these systems
will be impossible in many cases, the internal data
structures would have to be changed or conversion
routines to be added, and the ability to run stand-alone
would be lost. With our concept the (stand-alone) pro-
grams are running simultaneously under the control
of the net-manager, they can exchange any type of
data they are able to handle. Only small changes have
to be made to adapt programs for running inside the
net, in many cases this should be easily possible.

A widely used network package is PVM (Parallel
Virtual Machine) [PVM94]. It allows a heteroge-
neous network of parallel or serial computers to ap-
pear as a single concurrent computational resource.
PVM was designed to allow hundreds of computers
and thousands of task to solve problems in parallel. It
contains routines for configuring the virtual machine
and for communication between processes. As you

might have noticed the functionality provided by our
net-manager is a (small) subset of the functionality
available with PVM, but the interface to the network
for both server and clients is quite different.

Since we were not interested in very large con-
figurations but in working interactively with several
programs running on different machines we used a
simple server/client model. In fact we could have
used PVM for starting clients and for the internal
communication between server and clients, but this
would have saved us only from writing a small part
of the net-manager code.

The authors of PVM avoided to use signal driven
I/O and interrupt handlers, mainly because of porta-
bility problems. PVM programs have to check regu-
larly if there are messages for them — this is exactly
what we wanted to avoid, because important parts of
existing programs would have to be changed, for ex-
ample the main event loop and computation functions
(otherwise the program would not react to requests
during long computations). Therefore we used the
signal mechanism, so far our net-manager has been
tested on SGI workstations, IBM risc machines, a
Convex supercomputer and Linux PC’s. The porta-
bility problems mainly seem to occur for machines
not running Unix, especially for parallel machines
with multiple processors.

The way the data transfer is handled in PVM is
a problem for our kind of application. For each
datatype pack and unpack routines are needed to en-
code the data before sending it and to decode it after
the transmission. For simple messages like the ones
exchanged between server and clients these routines
are easy to write, but for very complex geometric data
structures (there are dozens of geometric datatypes
and classes in GRAPE) this get difficult and very
time-consuming. Integrating existing read/write rou-
tines in the PVM message system is not possible.

As explained before we use XDR [XDR] not only
to transfer messages between server and clients but
also to exchange data between clients (the pack and
unpack routines of PVM internally use XDR, too).
These XDR routines can also be used to archive data
in a machine independent format, and they can be used
when the program is running stand-alone, too. For
example we have written an XDR archiving system
for GRAPE which can be used both to store data on
disk, tape etc. and to exchange data between GRAPE
programs with the net-manager (this GRAPE XDR
format is one of the predefined data formats). With
our net-manager concept programs can use existing
archiving routines to transmit data — the only re-

quirement is that these routines can write the data to
resp. read it from a stream. This helps to keep the
adaptation of programs to the net-manager as simple
as possible.

Finally, to show how the net-manager interface can
be integrated in an application, we present the ex-
tensions we have added to GRAPE by using the net-
manager.

6 Special Net-Features in GRAPE

We have created a variety of tools to handle remote
objects and remote methods in GRAPE and to in-
voke other programs to act on objects in GRAPE.
The interface to the net-manager is the same like for
other stand-alone programs but the internal handling
of ports and message sending is incorporated into the
object oriented design of GRAPE and its hierarchical
data organization.

First let us briefly introduce the object-oriented
graphics proramming environment GRAPE, a pack-
age both authors have been working on for several
years.

6.1 Introduction to GRAPE

GRAPE is a GRAphics Programming Environment
to understand, explore and solve mathematical prob-
lems from differential geometry and continuum me-
chanics, two of the main research areas of the Son-
derforschungsbereich 256 (SFB) for Nonlinear Partial
Differential Equations at the University of Bonn. It
has been developed by students and staff members of
the SFB in Bonn since 1987, but now also receives
much impetus from groups in Freiburg and Berlin.

GRAPE has an object-oriented kernel written in
standard C and uses a device independent approach
for interactive graphic visualization. Therefore it runs
on a variety of computers — drivers for many sys-
tems are available, including Silicon Graphics, Sun,
standard X-window, PostScript, Softimage and oth-
ers. The system offers a class and method library for
mathematical applications and objects for interactive
control to be used in C programs. Additionally, it in-
cludes an interactive visualization and programming
environment. GRAPE is an open system with easy
extension of existing classes, inclusion of new meth-
ods, and adaptation of the graphics interface. GRAPE
allows nearly all geometric objects including their
mathematical data to be time-dependent.

light surf trans manag opts Exit

(C)1993 SFB256 Grafiklabor Uni Bonn

Explicit
Version 3.1

"Grape In"
NetScene

"Grape Out"
NetScene

"bulb"
Explicit

"Evo Out"
NetScene

read st write st read gr write gr

Project: add Project: del

display methodsend method

I/O

switches

I 0.00000scene timeE

mark copy hardcopy

expand delete-one delete-all

Scene display method Scene dynamic method

scene-trans scene-suprop

copy-trans copy-suprop

0.00000main time

step < > 10# steps

Send Data Recv Data Status

Remote Disp Start Net

"Grape In"
NetScene

"Grape Out"
NetScene

"bulb"
Explicit

"Evo Out"
NetScene

Ports represented as nodes
in the data hierarchy

Send Data Recv Data Status

Remote Disp Start Net

Interface to the client functions

Figure 7: Interface in GRAPE to the net-manager functions. The net-manager is already running, therefore the
start button is disabled.

Supported are among other things different kinds
of curves, surfaces and volumes in three space and
hierarchies of data. Geometric objects may carry ad-
ditional information as for example an n-dimensional
finite element function or describe maps between sur-
faces. Various mathematical algorithms from differ-
ential geometry and finite element theory as well as
numerous visualization tools are available including
for example local refinement, extraction of level sets,
reflection operations, calculation of particle traces or
deformations of surfaces in flow fields. The driver
concept allows display and modification of objects
e.g. in hyperbolic space.

The GRAPE software is non-commercial. Sci-
entific sites may obtain it on request from the
SFB in Bonn for free. For more information
see http://www.iam.uni-bonn.de or send an email to
grape@iam.uni-bonn.de.

6.2 Remote Objects and Methods

In GRAPE each port is represented as a node of a
special class NetScene in the ordinary data hierarchy

(figure 7). The object at this node is in its nature a
proxy object. It resides on the remote machine in the
remote process. All methods sent to this object are
passed to the remote object. This mechanism runs
in the background and not visible for the user — for
the user the object behaves like a local object. If
the remote object of a NetScene shall be visualized
in the local process we ask the remote object for a
copy which is then stored at the local node (figure 3).
Visualization methods send to the NetScene then
operate on the local object for efficiency reasons.

All functions for creating or deleting ports and
sending or receiving data were embedded in methods,
therefore they can be called by just pressing a button.
This includes starting the net-manager if the GRAPE
process is already running stand-alone (figure 7).

The principles of remote objects and methods make
it possible to execute methods on arbitrary computers
chosen at run-time. This allows the user to paral-
lelize his work by doing big computations on other
machines and keeping the resources of his computer
free for the interactive work:

Assume that you have a large computation job

which you want to put on a supercomputer without
a graphic display. To control the state of your nu-
merics you can start GRAPE on a graphic computer,
connect both programs using the net-manager and let
the numerics always send in-between results to the
graphic computer. In GRAPE the results will appear
as objects at the hierarchy nodes connected to the nu-
merical program and you may operate on the data as
you would do in a stand-alone program (figure 3). The
only difference is that from time to time the numerics
send new geometries updating the nodes’ objects.

The graphic computer may even be a simple PC not
capable of holding the whole numerical process in its
own memory but capable of holding some extracted
reduced set of information, for example a section of
a dynamic process.

References

[AVS89] C. Upson et al: The Application Visu-
alization System: A Computational En-
vironment for Scientific Visualization,
IEEE Computer Graphics and Appl.,
July 1989

[Bra92] K. Brakke: The surface evolver,
Exp. Math. 2, 141-165 (1992).

[Geo95] M. Phillips et al: The Geomview Manual,
The Geometry Center, Minneapolis, 1995

[Gra95] GRAPE User’s Guide and Reference
Manual 5.0, Sfb 256 Universität Bonn,
September 1995

[OP94] B. Oberknapp, K. Polthier: The Net-
Manager Concept — Working Together
and Distributed Computing, GRAPE
Newsletter 2, Sfb 256 Universität Bonn,
June 1994

[PVM94] A. Geist et al: PVM 3 User’s Guide
and Reference Manual, ORNL/TM-
12187, Oak Ridge National Laboratory,
May 1994

[XDR] eXternal Data Representation, Sun Tech-
nical Notes (for RPC 4.0), Mountain
View, California, Sun Microsystems, Inc.

light surf trans manag opts Exit

(C)1993 SFB256 Grafiklabor Uni Bonn

GRAPE
Version 4.1

"main"
Scene

"Grape In"
NetScene

"Gergonne"
Geom2d

read st write st read gr write gr

Project: add Project: del

display methodsend method

I/O

switches

I 0.00000scene timeE

mark copy hardcopy

expand delete-one delete-all

Scene display method Scene dynamic method

scene-trans scene-suprop

copy-trans copy-suprop

0.00000main time

step < > 10# steps

Send Data Recv Data Status

Remote Disp Start Net

Display: carlotta

Machine: carlotta

Program: grape

Configure

Add Client Kill Client

Connect Clients

Client

Print Status

Exit Net

Server

grape

In 0 Grape Out 0 Grape

grape

In 0 Grape Out 0 Grape

Programs

Figure 3 (B. Oberknapp, K. Polthier: A Simple Concept for Distributed Computing in Computer Graphics):
Remote Objects in GRAPE. The computation process is running on an SGI Challenge, the graphical postpro-
cessing is done on an SGI Indigo2. The same geometry is accessed in the data hierarchies of both GRAPE
processes.

light surf trans manag opts Exit

(C)1993 SFB256 Grafiklabor Uni Bonn

Explicit
Version 3.1

"main"
Scene

"Off Out"
NetScene

"cat_hel"
Geom2d

read st write st read gr write gr

Project: add Project: del

display methodsend method

I/O

switches

I 0.00000scene timeE

mark copy hardcopy

expand delete-one delete-all

Scene display method Scene dynamic method

scene-trans scene-suprop

copy-trans copy-suprop

0.00000main time

step < > 10# steps

Send Data Recv Data Status

Remote Disp Start Net

Figure 6 (B. Oberknapp, K. Polthier: A Simple Concept for Distributed Computing in Computer Graphics):
Geomview and GRAPE. An external Geomview module was used for connecting Geomview to the net-manager.

