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Abstract

We consider discrete harmonic maps that are conforming or non-conforming
piecewise linear maps, and derive a bijection between the minimizers of the two
corresponding Dirichlet problems. Pairs of harmonic maps with a conforming and a
non-conforming component solve the discrete Cauchy-Riemann equations, and have
vanishing discrete conformal energy.

As an application, the results of this work provide a thorough understanding of
the conjugation algorithms of Pinkall/Polthier and Oberknapp/Polthier used in the
computation of discrete minimal and constant mean curvature surfaces.

1 Introduction

Discrete harmonic maps have been well studied as a basic model problem in finite element
theory, while the definition of the conjugate of a discrete harmonic map was not completely
settled. In this paper we are interested in pairs of discrete harmonic maps on a Riemann
surface M which are both minimizers of the Dirichlet energy

1

== |Vu|2 dz,
M

E(u)

and are conjugate, i.e. solutions of the Cauchy Riemann equations
dv = *du.

We note that generically such pairs neither exist in the space of piecewise linear conforming
Lagrange finite elements .S}, nor in the space of piecewise linear non-conforming Crouzeix-
Raviart elements S;. Each space alone is too rigid to contain a conjugate for each harmonic
function.

In the present paper we compute the conjugate of discrete harmonic maps by simulta-
neously considering harmonic maps in S;, and S} from M to R. The main result derived
in section 9 is

Theorem 1 Let T} be a triangulation of a domain on a Riemann surface M in R™.

1. Let uw € Sy, be a minimizer of the Dirichlet energy in Sy. Then its conjugate map

u* is in Sy and is discrete harmonic.

2. Let v € Sy be a minimizer of the Dirichlet energy in S;. Then its conjugate map v*
is in Sy, and is discrete harmonic.

3. Let uw € Sy, respectively S} be discrete harmonic in Sy, respectively Sj. Then
u* = —u.
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Our interest in harmonic maps arose from the study of numerical algorithms to com-
pute the conjugate of minimal and constant mean curvature surfaces in euclidean three-
space, and thereby obtaining unstable solutions of the corresponding variational problems.
In the algorithms [9] and [8], the conjugate of a minimal surface is obtained via the con-
jugate of a discrete harmonic map. Conjugate harmonic maps were defined on the dual
graph of the edge graph of the original minimal surface. Although these methods were
successful and allowed the numerical computation of a number of complicated minimal
surfaces for the first time, they provided no further hints on the harmonicity properties
of the conjugate harmonic maps. The results of the present paper provide a thorough
understanding of the geometric conjugation algorithms used in Pinkall and Polthier [9]
and in Oberknapp and Polthier [8] by relating the geometric discretization techniques to
the context of finite element methods, and the convergence of the conjugation of minimal
surfaces.

Convergence of conforming harmonic maps has been shown by Tsuchiya [10]. As a
more general result for surfaces, Dziuk and Hutchinson [5] obtained optimal convergence
results in the H! norm for the finite element procedure of the Dirichlet problem of surfaces
with prescribed mean curvature have been obtained by . Compare Miiller, Struwe, and
Sverdk [7] for harmonic maps on planar lattices using the five-point Laplacian.

In a sequel to our present paper we will apply the duality between discrete harmonic
maps and their conjugates to define discrete conformal maps. We will extend a conformal
energy proposed by Hutchinson [6] to the discrete spaces Sy, xSy and show that the discrete
holomorphic maps have zero conformal energy, a property generically not available for
conforming piecewise linear maps.

This paper starts with a review of the Dirichlet problem of harmonic maps in section
2, followed with its discretization using conforming Lagrange elements in section 3. In
section 4 we discretize the same Dirichlet problem using the non-conforming Crouzeix-
Raviart elements, and derive a pointwise expression of the discrete minimality condition.
Section 5 contains the main results of the paper, namely, identifying solutions in both
finite element spaces as pairs of discrete conjugate harmonic maps. An application of the
results is given in section 6 to the conjugation of discrete minimal surface.

The author thanks Gerd Dziuk for a discussion on the relation of the conjugate minimal
surface method [9] and non-conforming elements.

2 Review of the Dirichlet Problem

We start with a short review of the Dirichlet problem of harmonic maps. For simplicity, let
) C R? be a simply connected, convex, polyhedrally bounded domain, and let H'(£2) be
the Sobolev space of weakly differentiable functions. The weak derivative v of a function
u € H(Q) is defined as the solution of

/ vodr = —/ udpdx Vo € C5P (),
Q Q

and is denoted by du := v. L2(Q) consists of all square integrable functions u equipped
with the scalar product and norm

(u,v)g ::/Qu(x)v(x)dm and |[[ully := v/ (u, u)o.

On H'(2) we have the scalar product and norm

(u,0)m ==Y (0%,0%)y and [[ull,,, := \/10°ull.

la|<m



Let V := {u € H'(Q) | ujpo = g} be the affine vector space of admissible functions and
Vo = {u € HY(Q) | up = 0} the space of possible variations with compact support.
The Dirichlet problem of the Laplace equation in Q2 for v € V'

Ay = 0in Q (1)
upq = gon

is the Euler-Lagrange equation of the corresponding variational problem of minimizing
the Dirichlet energy

1
Ep(u) = 5/ Vul> > min  VueV. (2)
Q
The functional Ep takes on its minimum in V at w if and only if the bilinear form
a:V xV — R given by

a(u,v) ::/Vqudx
Q

fulfills
a(u,v) =0Vv € V. (3)

The minimizer is unique since
1
Ep(u+v) = Ep(u) + Ea(v,v) > Ep(u) Yv € Vp\ {0}.

Definition 1 The solution u € H*(2) of the variational problem (2) or, equivalently, of
the bilinear equation (8) is called a weak solution of the Laplace equation (1).

For a discussion of the solutions of (1) and their numerics see e.g. [3][2]. By recalling
two numerical methods based on conforming and non-conforming piecewise linear elements
in the following two sections, we relate them with the geometric algorithms in [9] and [8].
The geometric point of view allows to interpret both solutions as pairs of conjugate discrete
harmonic maps.

3 Conforming Finite Elements

We approximate V' by a finite dimensional affine subspace S, C V where h denotes a
discretization constant. For simplicity, we assume © C R? is a simply connected, convex,
polygonally bounded domain divided into triangles. The results in section 5 are valid for
more general domains with a regular Riemannian metric. Further, we restrict to Dirichlet
boundary conditions for simplicity, see [9] for a discussion of Neumann boundary problems
in this context.

Definition 2 A subdivision T, = {T1,..,Tm} of Q into triangles T; is a conforming
triangulation if the following properties hold:

1. Q=U"T,

2. Fori # j, T; N T} is empty, or it is a common vertexr, or a common edge of both
triangles.

Furthermore, we assume each triangle in Ty has diameter at most 2h.



Definition 3 For a triangulation %y of €, we define the space Sy, of conforming finite
elements:

KT {v :Q—-R | v e CO(Q) and v is linear on each triangle OfQ}
Sh,o :{U:Q—>R |v€Sh andv‘agz:O}

Sh,o is a finite dimensional subspace of V = H!({2) spanned by the Lagrange basis
functions {1, .., ¢, } corresponding to the set of interior vertices {1y, ..., 2, } of T, that
is

@Z:QHR, (piESh,o
wi(z;) =6 Vi, j € {1,..,n} (4)
; is linear on each triangle

where {x1, ..., x5} is the set of interior vertices of 5. Then each function up € Sp, has a
representation

() =) + D2

where u; = up(x;), and ug € Sy, is an arbitrary functlon satisfying the Dirichlet boundary

condition. We use @y, = (u1, ..., up) to denote the unique vector representation of wy,.
Since Sj, is a finite dimensional subspace of V, the minimization problem (2) for the

Dirichlet energy has a unique solution wj, in Sy, solving the system of equations

d
——Ep(un) Z |vuh\2 =0Vje{l,.,n}.
u] ] T,€%,

Definition 4 The unique solution uyp in Sy of Dirichlet problem (2) in Sy is called a
discrete harmonic map.

3.1 Approximation

The following statements belong to the basic techniques in the approximation theory of
finite elements and for details we refer the reader to [2][3]. Let u be the weak solution of
the variational problem (2) in V, and uy, the solution in S;, C V. Since Q is bounded it
follows from the Poincaré-Friedrich inequality that the bilinear form a is Vp-elliptic, i.e.
there exists constants 0 < o < C such that

2
a(u,u) = aflully and |a(u,v)] < Clully [[vf]; -

Therefore, the lemma of Céa gives the estimate

Ju=unll << g ffu= vl o)
where the approximation quality of the discrete solution uj of (2) is estimated by the
minimizers of the distance of u to S. It is a standard technique to estimate the infimum
of the distance u to S with the distance of the interpolating function Ipu of u on Ty.
Let ¥p be a quasi-uniform triangulation, i.e. there exists a positive constant uniformly
bounding the quotient of the diameter of the cicumcribed circle over the diameter of the
inscribed circle of all triangles in T,

Theorem 2 (Approximation Theorem) Let ¥, be a quasi-uniform triangulation of
Q, and u the weak solution of (2). Then for the interpolation Ij, with piecewise linear
polynomials there exists a constant ¢ = ¢(, u) such that

lu— Inull,, , < ch?™™ luly o Vu € H?*(Q) and 0 <m <2 (6)



Combining the estimates of equations (5) and (6), the piecewise linear solution uy,
€ S, is estimated by
[ = unl,,, < eh®7" July g

on each discretization T}, of Q2. Therefore, as h — 0 one has quadratic convergence of up
to w in the Lo norm.

3.2 Discrete Harmonic Maps

There exists a geometric description of the minimality condition of the Dirichlet energy
(2) as a balancing condition of weighted edges which was an essential ingredient in the
algorithm [9]. Now we use the explicit representation of the basis functions to derive the
same formulas via the finite element approach.

Let T = {V;, V4, V3} be a triangle with oriented edges {c1, c2,c3}, and ¢y, : T — R be
the Lagrange basis function at vertex V; with ¢y, (V;) = §;;. Then its gradient is

1
Vv (@) = 2 areaTJCi’ (7)
where J denotes rotation by § oriented such that Je; points into the triangle. The basis

functions have mutual scalar products

cot o
<V‘PVi4 ) VQOVH] > = " QareaT )
1
<Jv<pm, V‘PW+1> 2areaT
cot a1 + cot a4 1
Voo 2 —
IVev,| 2areaT

Note, that equation 7 implies V; = —V;_1 — V1. Let u, € Sp, then on a single
triangle 7' the gradient of uypr : T — R is obtained from wupr () = 3 uipsi(z)

3
1
VUth = W;UJJCJ (9)

Theorem 3 Let Q be a domain with triangulation %y, and Sy the set of continuous
and piecewise linear functions on Xy. Then the discrete Dirichlet energy of any function
up, € Sy s given by

Epun) =7 3 (coba + cot fiy) fu(r) — ulay). (10)

edges (wi,a;)

Further, the unique minimizer of the Dirichlet functional (2) solves

d 1

oy Ep(up) = 5 > (cot g, + cot By, ) (u(z) —u(zy,)) =0 (11)
edges (a:,-,,:z;,-,j) at x;

at each interior verter x; of X. The first summation runs over all edges of the triangu-

lation, and the second summation over all edges emanating from x;. The angles ay;; and

Bis, are vertex angles lying opposite to the edge (x;,x;;) in the two triangles adjacent to
(xi, .%'ij ) .



Proof. Using the explicit representation (7) of the basis functions and using V; =
—V@i—1 — V11, we obtain the Dirichlet energy of Up| 7

3
2
Z cot aj [ujp1 — w1

4>|»—~

Ep uh\T / Z\uwd—uj 1| (Vpj-1,Vpjt1) =

Summation over all triangles of ¥ and combining the two terms corresponding to the same
edge leads to equation (10).

At each interior vertex x; of ¥, the gradient of Fp with respect to variations of
u; = up(z;) in the image of wy, is obtained by partial differentiation and easily derived
from

d

=Ep(m) = [ (Vi V). (12)
U; Q

The explicit representations are essential for the results in section (5). H

Example 1 On a rectangular reqular grid in R? which is triangulated by subdividing along
either diagonal of each rectangle, the interpolating functions of

Rez, Rez?,Re2®, and Imz*

are discrete harmonic maps, and so are the interpolants of some other polynomials. On
this reqular grid, the weight of each diagonal is zero and, therefore, only the discrete values
of the five-star contribute to the Dirichlet gradient.

4 Non-Conforming Finite Elements

We now review the discretization of the Dirichlet problem (2) in the space of non-
conforming finite elements, and refer to [3][2] for a detailed discussion.

Definition 5 For a triangulation Ty, of ), we define the space of non-conforming finite
elements by

. ) vy 48 linear for each T' € Ty, and
Spo = {U 2R v is continuous at the midpoints of all triangle edges
Sho + ={v €S} |v=0 at the midpoints of all boundary edges }

The space S is no longer a finite dimensional subspace of V = H'(Q) as in the case of
conforming elements, but S}, is a superset of Sy,. Let {y;} denote the set of edge midpoints
of Ty, then the basis functions ¢; € S} ; of non-conforming elements are linear on each
triangle,

P; Q2 — R, ’L/JiES;;’O
@bz(yj) = 5ij Vi, 5 € {1, ..,TL} (13)
1); is linear on each triangle.

The support of a function ; consists of the (at most two) triangles adjacent to the edge
e;, and 1; is usually not continuous on 2. Each function v € S}, has a representation

vp(x) = vo(x) + Z v ()

edges e;

where v; = vp,(y;) is the value of v, at the edge midpoint y; of e;, and v € Sj an arbitrary
function satisfying the boundary conditions.



4.1 Approximation

The space S; is not a subset of H!({2), so the quadratic form a is not directly defined.
One extends it to a grid dependent bilinear form aj to be used in the definition of the
Dirichlet energy in S}:

ap(u,v) := Z / VuVu for uw € HY(Q) & S
T

Tefzh

and norm
2 2
o2, = > loll3, 7 = an(v,v) for v e HY Q) & ;.
TET),

Note that for functions v € H™(Q2) both norms agree: ||ul],, , = ||ull,,-
In the following Ansatz for the Dirichlet problem, one obtains an additional boundary
term that did not appear in the conforming situation:

Aup=— Y A VuViyds + > /a . dywipds for v € S, . (14)

Tn TeT, TET,

In the definition of the Dirichlet energy, we exclude the boundary term since by equation
(18), it vanishes for discrete harmonic maps.

Definition 6 For uj € S}, we define its Dirichlet energy by

1
Ep(w) =3 3 / Vun|? .
Tefzh T

Compared to the approximation of a weak solution v € V' in S}, there occurs in S} a
further error, the consistency error, in addition to the approximation error.

The following discussion uses the approximation results given in [1]. Let o and C be
the ellipticity constants of a with respect to S}, then the second lemma of Strang gives
the estimate of Strang:

Lemma 4 (Strang 2) Let u be the weak solution of equation (2) in V = H*(Q) and uy,
the discrete solution in S;. Then there exists a number c independent of the discretization
h such that

: |an(u, wp)|
lw—wp|l,,, <ed inf |lu—wupl,  , + sup .
mh un €Sy mh wp €S |hﬂh”nuh

The first term is the approximation error that appears in Céa’s lemma, and the second
term is the consistency error of Sj. One estimates the terms on the right-hand side of the
lemma and obtains [3]:

Theorem 5 Let () be a convex domain or have smooth boundary. Then the non-conforming
discrete harmonic maps v, € S; approzimate a weak solution uw € H'(Q) with the follow-
ing convergence
2
lu = wnllo,p, + R llu = vnlly ), < ch”ful,.



4.2 Discrete Non-Conforming Harmonic Maps

Using the identities in an Euclidean triangle T' with vertices {Vi, Vs, V3} and oriented
edges {c1,ca,c3}, ¢1 +ca+c3 =0, we obtain on T the following representation of the basis
functions v; € S} corresponding to edge c; :

-1
Vi = =2Vpy, = ——Je;
area A\

where ¢y, € S is the conforming basis function corresponding to the triangle vertex V;
opposite to the edge ¢;, and J is the rotation of an edge by 7 such that Jc points from
edge c in the direction of V.

(15)

v(m;,)

Figure 1: A non-conforming map is given by its values on edge midpoints.

Theorem 6 Let v € S} be a non-conforming function on a triangulation Xy of Q). Then
the Dirichlet energy of v, has the explicit representation

ED(U) = Z COtOzi }Ui72 fvi71}2+cotﬂi\vil 7Ui2|2. (16)
all edges c;

where {i_o,i_1,11,12, } denote subindices of adjacent edge midpoints as shown in figure 1,
and v; denote the value v(m;). The angles are measured in .
The unique minimizer of the Dirichlet functional on Ty solves the system of equations

d ‘ s , s
Y Gt e st et L SRS

dvi + cot [e79) (’Ui — Uiz) —+ cot Q, (Ui — Uil)
at each edge midpoint m;.

Proof. Since Viy; = —2V;, the representation of the Dirichlet energy is a direct
consequence of the explicit representation for conforming elements (10). On a single
triangle T,

1 3 3
2 2
Ep(yr) =5 /;F =Y g1 = vl (Vo1 Vi) = Y cota [vjpn — vjal”
j=1

Jj=1

The support of a component of the gradient of the Dirichlet energy consists of those two
triangles adjacent to the edge corresponding to this variable. Equation (17) follows directly
from the representation on a single triangle T with edges {c1,c2,c3} and ¢1 +c2 +¢3 =0

3

/T<VU|T7 Vi) = ﬁ(T) Zvj (cj,ci)

d
d’l}i

Ep(vr)

= 2cota;_1(v; — vig1) + 2cot ajpq(v; — vi1).



by combining the expression for the two triangles in the support of ;. H
For v € S} and ¢ € S}, the boundary integral in equation (14) gives

3
al,v-z/st:—Z/ <o, L5 S s,
orT i=1 Cj |CZ|

since the outer normal along an edge c; is given by v; = _%T Using (Vv, ¢;) = 2(vi41 —
Uifl) and JCZ' = cot, Q41Ci41 — cot Q;_1C;—1 We get

3
/ Oy - Pds = ZQ(cot i1 (Vie1 — v;) + cot a1 (vip1 — v3)) (M), (18)
oT

i=1

where m; is midpoint of ¢; for ¢ = 1,2, 3. Since v is continuous at inner edge midpoints, the
value ¥ (m;) is equal for adjacent triangles and, therefore, the boundary integral vanishes
at inner edges if and only if v € S} is discrete harmonic. Summing up, for each discrete
harmonic map v € S; and function ¢ € S} , the boundary integral vanishes.

5 Conjugate Harmonic Maps

In this section we define the conjugate harmonic maps of discrete harmonic maps in Sj,
and in S;. A smooth harmonic map w : M — R on an oriented Riemannian surface M
and its conjugate harmonic map uv* : M — R solve the Cauchy-Riemann equations

du* = xdu

where * is the Hodge star operator with respect to the metric in M. In the discrete
version, we denote by J the rotation through 7 in the oriented tangent space of M, and
start with a locally equivalent definition as Ansatz:

Definition 7 Let u € S}, respectively S}, be a discrete harmonic map on a triangulation
T with respect to the Dirichlet energies in Sy, respectively Sy. Then its conjugate harmonic
map u* is defined by the requirement that it locally fulfills

VurT = JVur for each triangle T € T. (19)

The rest of the section is devoted to showing that the discrete conjugate map is well-
defined (showing the closedness of the differential *du) and to proving the harmonicity
properties of the integral u™*.

To avoid case distinctions we represent each function with respect to the basis functions
; of S such that on each triangle

3
ur = E iy,
1=1

where u; is the function value of v at the midpoint of edge ¢;. We use the same notation
for uT‘T, and obtain by definition 19

3 3
w; Vs = ui JV;. (20)
— —



Lemma 7 Let T be a triangle with oriented edges {c1,c2,c3}, c1 +ca+c3 =0. A pair of
linear functions u and u* related by equation (20), has values at edge midpoints related by

< ul — uj ) _ ( cot ag(ug — uq) + cot aq (ug — ug) ) (21)

ug —uj cot ag(ug — u1) + cot ag(ug — uq)

Proof. The representation (15) of Vi; converts equation (20) to

3 3

*
E u;Je; = E U;C -
i=1 i=1

Using —cg = ¢1 + co, we express the left side of the above equation as a vector in the span
of {Je1, Jea}

(uz —uy) Jer + (ug —ud) Jea = Zuici.

If the triangle T' is nondegenerate, then the matrix (Jey, JJeg) has rank 2, and scalar
multiplication with ¢; and ¢2 yields

* * 3
Uz — Uy :Lzu (c2,ci)
ul — uj area(T) & "\~ (c1,¢i) )’

which easily transforms to equation (21). Wl
Now we consider a discrete harmonic map u € Sj and prove local exactness of its
discrete conjugate differential.

Proposition 8 Let Tj be a triangulation and u € Sy, with u : ), — R an edge continu-
ous discrete harmonic function. Then the discrete Cauchy-Riemann equations (19) have
a globally defined solution u* : T, — R with u* € S;. Two solutions uy and u3 differ by
an additive integration constant.

Proof. We define the discrete differential du™ of u™ such that on each triangle T’
durT = *du.

Since ur is a linear map, the conjugate differential dur‘T is well defined and there exists
a unique smooth solution uT‘T of the smooth Cauchy-Riemann equations on 7T, up to an
additive constant. By Lemma 7, ui“T is explicitly given in terms of u;p and T

If uw € Sy, is a discrete harmonic map then it turns out that du* is closed along closed
paths on Q that cross edges only at their midpoints. Since du™ is closed inside each
triangle, it is sufficient to prove closedness for a path 7y in the vertex star of a vertex p € Q
such that 7 linearly connects the midpoints of the two edges of T" having p in common,
see Figure 2. Let {eq,..,e,_1} be the sequence of edge midpoints determining . The
edges d; := ej;1 — e; of 7y are parallel to ¢; with ¢; = 2d;. We use equation (21) in each
triangle to derive

m

/du* = Z/ sduyr, =y < JVuyr,,d; >
8

j=1Y71; j=1
1 m
= -3 Z < Vuq,,Jej >=0,
Jj=1

10



Figure 2: Dual edge graph v around a vertex.

since u is harmonic in Sy, see equation (12). Therefore, du* is closed along the dual
edge graph through the edge midpoints of ¥, and u* € S}, is globally defined on simply
connected regions of . M

For a harmonic map u € Sy, the following proposition proves harmonicity of the
conjugate map u* € Sj.

Proposition 9 Let u € Sy, be a discrete harmonic map on a triangulation Ty and let
u* € Sy be a solution of the discrete Cauchy-Riemann equations (19) given by Proposition
8. Then u* has the same Dirichlet energy as u, and u* is discrete harmonic in S} .

Proof. Let u* be the solution of the discrete Cauchy-Riemann equations (19) for a
discrete harmonic map u € Sp. Then we show that u* is a critical point of the non-
conforming Dirichlet energy in Sy by rewriting the Dirichlet gradient (17) of u* in terms
of values of u.

On a single triangle T' = {c1, 2, c3} with edge midpoints m; on ¢;,we note that

(IVur, Vips) = (u(mi—1) —u(miy1)) Vi € {1,2,3}, (22)

area(T')
which follows directly from Vu = 327, u(m;)Vi; and

0 j=1i
(IVY;, V) = mreqmy J =i 1
are_a(T) J=i+1

Let T3 U T5 denote the two triangles forming the support of v; as shown in figure 3.
Using equation (22) we obtain

du? Ep(u?) = Zr] UT, (Vu', Vi)
= 2(u(mi_,) —u(mi_,)) + 2(u(m;, ) — u(mi,)).

Since w is linear we can rewrite the differences at edge midpoints as differences of w at
vertices on the common edge of 77 and 7%, and obtain

d
du?

K2

Ep(u’) = u(Vj_,) = u(V;_,) +u(V,) = u(Vj,). (23)

This equation relates the energy gradient of u* to the function values at vertices of u. We
emphasize the fact that the derivation of the equation does not use edge continuity of w,
which will allow us to use 23 in the proof of Theorem 10. The right hand side of (23)

11



Figure 3: Notation of edge midpoints in pair of triangles.

vanishes if and only if
Ule; in T, = Ule; in T, T constant.

Therefore, the harmonicity of u* follows from, and is equal to, the edge continuity of
ueS, 1

The following main theorem states the complete relationship between harmonic maps
in Sp, and S}, and includes the previous propositions as special cases.

Theorem 10 Let T} be a triangulation of a Riemann surface M.

1. Let uw € Sy, be a minimizer of the Dirichlet energy in Sy. Then its conjugate map
*

u* is in S} and is discrete harmonic.
2. Letv € S} be a minimizer of the Dirichlet energy in S},. Then its conjugate map u
is in Sy, and discrete harmonic.

3. Let u € Sy, respectively S;; , be discrete harmonic in Sy, respectively. S;. Then
sk

u** = —u.
Proof. 1. The first statement was proved in propositions 8 and 9.

2. Let v € S} given by v = > v;1; be discrete harmonic. Along the lines of the
proof for the corresponding Proposition 8 concerning Sy, we define v‘*T (up to an additive
integration constant) as the well-defined integral of

dvjp = *dvjr VT € Ty,

which uniquely exists since vy is linear. Using the same arguments as in the proof of
Proposition 9 and Vv* = JVv, we derive an equation for v that is identical to equation
(23) for u:

dil ED(U) = v*(‘/j—l) - U*(ijz) + v*(vjz) - v*(‘/jl)7

where Vj, are vertices as denoted in Figure 3. Since v is harmonic, we can choose the
integration constants of v* such that v* becomes edge continuous and lies in S},.

The harmonicity property of v* follows from the closedness of v. Let v* = > vip; €
Sh, and then splitting Vi, = —V1);, — Vib;, | in each triangle, we obtain

dv;"ED(U ) = [gh <Vv ,dv;Vv > Ltar(pi) (JVv, Vi)

12



= S [ (995 £ V)
J i
_ 1
- ;/’TLJ m((vi_j+l - vij—l) + (vij—l - Uij))
ZviHl —vy; =0
J

since v € S} is closed on the path around each vertex p;. Therefore v* is critical for the
Dirichlet energy in Sj,.

3. The third statement is a direct consequence of twice applying the * operator twice,
which rotates the gradient in each triangle by 7 in the plane of the gradient. H

Corollary 11 The conjugation is a bijection between discrete harmonic maps in Sy and
Sy, where each pair (u,v) fulfills the discrete Cauchy Riemann equations. Further, both
maps have the same Dirichlet energy.

Proof. The proof of Theorem 10 and the previous propositions show that, for a pair
(u, v) of harmonic conjugate functions u € Sj, and v € S}, the harmonicity condition of
is equal to the closedness condition of v, and the closedness condition of u is equal to the
harmonicity condition of v.

The equality of the Dirichlet energies follows directly from the Cauchy-Riemann equa-
tions. M

6 Application to Minimal Surfaces

We apply the results of the previous sections to the computation of the conjugate of a
minimal surface. Since these results are corollaries of the previous sections applied to the
conjugation method in [9] we refer to the original work for details on the minimization
algorithm.

Let F : M — R3? be a minimal immersion of a Riemann surface M into R3 with
normal vector field N : M — S? and differential dF. Then the conjugate minimal surface
F*: M — R3 with normal field N* : M — S? is defined as solution of the system

dF* = xdF (24)
N* = N

where % is the Hodge star operation with respect to the induced metric on M. From the
system of differential equations it is obvious that a minimal surface and its conjugate are
isometric and have parallel normal vectors at corresponding points in the smooth case.

Currently, only the method of Pinkall and Polthier [9] seems to allow the conjugation
of a numerically computed discrete minimal surface with reasonable results. The main
difficulties are to provide accurate C'' data from numerically obtained minimal surfaces
required for the system 24. In [9] the discrete conjugation algorithm is based the concept
of discrete harmonic maps, but the method did not unveil the variational properties of
the conjugate surface. In the following we first show the area minimality of the conjugate
discrete minimal surface, and second, describe a practical algorithm by reformulating the
conjugation method of [9] in terms of the conjugation of harmonic maps using conforming
and non-conforming functions derived in the present paper.

For simplicity, consider a Plateau problem with Dirichlet conditions: for a given closed
boundary curve I' C R? find a simply connected minimal surface M C R3 with OM =T.
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Corollary 12 Let M be a conforming (respectively non-conforming) triangulation with
vanishing gradient of the discrete area functional at all interior vertices. Its comjugate
surface M* is constructed by rotating all triangles by w/2 in the oriented triangle planes,
and by assembling pairs of adjacent triangles at the midpoint of their common edge.

M* is a critical point of the area functional in the space of non-conforming (respec-
tively conforming) triangulations with fized Dirichlet boundary, and M™* is unique up to
translation.

Proof. Since M is area minimal, the identity map
id: M — M
is a conformal, discrete harmonic map with
area(id(M)) = Ep(id: M — M).

Applying the conjugation algorithm of the previous sections to the harmonic coordinate
functions of id gives a conjugate map i¢d* : M — M™* which is discrete harmonic. Since id*
is rotation by 7/2 in each triangle, it is isometric on each triangle and conformal. There-
fore, M™ is a critical point of the discrete area functional in the class of non-conforming
(respectively conforming) triangulations. M

In practical applications the assumption of the previous corollary, i.e. having a discrete
minimal surface to start with, is hardly satisfied. Often, minimal surfaces are computed
by solving a variational problem where the numerical method stops before reaching the
absolute zero of the gradient. The method of [9] allows to circumvent this difficulty by
applying the conjugation to harmonic maps instead of minimal surfaces. Harmonic maps
are quadratic problems which can be computed exactly compared to the non-linear process
of area minimization.

We approximate a minimal surface M via a sequence of harmonic maps on surfaces.
We recall the iteration process introduced in Dziuk [4] for minimal surfaces in R?, and
extended by Oberknapp and Polthier [8] to S3:

Algorithm 13 To compute the conjugate M; of the Plateau problem M), with Dirichlet
boundary condition I':

1. Let My be a triangulated initial surface with boundary 0My =T

2. Let M; be a surface with boundary I', then compute the surface M;;1 as minimizer
of the Dirichlet energy

1

. 2 . 1 o )
QAA IV(F; : M; — M) M,rgﬂl_m/MiW(F.MlﬁMﬂ .

This uniquely defines a Laplace-Beltrami harmonic function F; whose image F;(M;) =
M1 is the next surface.

3. Set @ — 7+ 1, and continue with step 2 until the area gradient of M; is reasonable
small.

4. Compute the harmonic conjugate F;* of F; : M; — M;y.

5. Set M}, := M;11 as numerical approximation of the Plateau solution, and set M} :=
F*(M;) as approximation of the conjugate minimal surface.
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This algorithm generates a sequence of discrete surfaces {M;} and vector-valued har-
monic maps {F; : M; — M;;1} which converges to a minimal surface if no degeneration
occurs. In order to extend the conjugation technique of the previous sections to the com-
putation of the conjugate of a minimal surface we allow the surfaces M; to be either all
conforming or all non-conforming triangulations. In this case the coordinate functions
of each F; are discrete harmonic functions either in Sj, or Sj, and the image F;*(M;)
of the conjugate harmonic of F; is a good approximation of the conjugate minimal sur-
face. The two approximations M), and M} are either a conforming and a non-conforming
triangulation, or vice-versa.
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7 Figure Appendix

7.1 Harmonic and Holomorphic Maps on a Square Grid

Conforming harmonic map u € S}, Conjugate harmonic u* € S} is
interpolating Re 22 a non-conforming map

Holomorphic pair (u,u*) (1/4 drawing)

E ) ) u* displayed middle 1/4 of each triangle.
compared with exact solution (grid)
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7.2 Application to Minimal Surfaces
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