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Introduction

Minimal surfaces in hyperbolic space have been studied by several authors.
The surfaces have many similarities with Euclidean minimal surfaces but they
differ in their behavior at infinity. Complete minimal surfaces in R3 of finite
total curvature are by a theorem of Osserman conformally equivalent to compact
punctured Riemann surfaces. In H3 the underlying complex structure has much
more freedom. For example, on all surfaces which we discuss later we may vary
continuously the infinite part of the boundary while keeping the finite part fixed,
and our surfaces would stay complete and embedded.

The initial purpose of our work has been to study non-compact minimal sur-
faces in H? whose boundary consists of a finite part in H3 and an infinite part
on the asymptotic sphere S of H3. This is a delicate problem since for example
the hyperbolic minimal surface equation for graphs in the upper halfspace model
becomes degenerate when approaching the complex plane in that model. Since
standard elliptic theory does not apply directly we use additional geometric ar-
guments in our study. This is possible since the equation becomes degenerate
only for technical reasons. For example, by a result of Hardt and Lin every
area-minimizing minimal surface with C! boundary on S* intersects the sphere
orthogonally and is regular, but the gradient of a corresponding graph would
become unbounded.

The main results of this work consider four different topics:

e By using geometric arguments we prove new CY and C* a priori estimates for
hyperbolic minimal surfaces in chapters (3) and (4). We derive a Hyperbolic
Four Point Condition and use it to prove our main gradient estimates in
theorems (18) and (19).

e In chapter (5) we review at first some known existence theorems for bound-
ary contours lying completely in infinity or completely in H3. Then we
prove our new existence theorem (29) for Plateau problems with boundary

contours lying in part in H? and in part on the asymptotic sphere S*°.
This is the first existence proof for such mixed contours, it relies on our

previously derived estimates. In some sense the theorem is a generalization
of the Euclidean existence theorem of Jenkins and Serrin.

e A new comparison theorem (37) for planar hyperbolic curves will be proved
in chapter (6). We use information about the turning angle of a curve
normal against a parallel translated vector to estimate the relative position
of the two normal geodesics through start and end point of the curve. This
theorem has its own interest, but we will intensively use it in our example
section.
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e Finally in chapters (7) and (8), we apply the previous results to prove exis-
tence of new complete embedded minimal surfaces in H3. Many examples
generalize minimal surfaces from R?® and thereby develop new properties.
We use essentially the existence theorem (29) and the comparison theorem
(37) to control our constructions.

In spite of the mentioned hierarchy we tried to keep the different chapters
self-contained since they have their own interest. Finally, we give in chapter (9)
a short introduction to the new minimization algorithm of Pinkall and Polthier,
which we used to compute the accompanying pictures of minimal surfaces. In
chapters (1) and (2) we recall properties of hyperbolic space and minimal surface
theory, and prove some elementary tools we use through our work.

I would like to thank my advisor Prof. Dr. Hermann Karcher for inspiring
discussions and valuable advice. He supported me through all parts of my studies
and focused my interest on minimal surfaces. It was always a pleasure to work
with him. Also I am grateful to the Sonderforschungsbereich 256, especially Prof.
Dr. Stefan Hildebrandt, for continuous support.



Chapter 1

Preliminary Remarks on
Hyperbolic Space

Hyperbolic space H" is the complete simply connected spaceform of dimen-
sion n with constant curvature -1. This space is sometimes called Lobachevsky
space in the literature, after one of the three mathematicians Bolyai, Gauss and
Lobachevsky who studied hyperbolic geometry first. We will recall some of these
models, together with their most essential properties for later use. Each model
has properties which make it useful in special situations and which justify chang-
ing among models a number of times.

For the Lorentz model we list the representations for a number of hyperbolic
transformations. Some of the explicit forms do not seem to be widely known. We
used them especially when computing the figures of the example session.

The properties of hyperbolic circles, and the formulas we derive for the prod-
uct of two rotations will be used in the proof of the comparison theorem in chapter
6.

1.1. THE LORENTZ MODEL

1.1.1. The model. The imbedding of H" into Lorentz space R}, which is
the point set R**! equipped with the Lorentz metric

(z,2), = —a5 + 2] +..+22 ,x e R",

is an imbedding into a vector space structure. It corresponds to the standard
imbeddings of the other spaceforms M"(c) with constant curvature ¢ € R, e.g.
Euclidean and spherical geometry:

M(e) = {zeR™||f =%}, ¢>0
M"(0) = R~
M(e) = {reRf™[20>0, |¢ff =+},c<0.

M™(1) is the n-dimensional sphere and LM"™ = M™"(—1) another synonym for
H™. We call the point O := (1,0,..,0) the origin of LM™. Totally geodesic
submanifolds of LM™ are intersections of linear subspaces of R7™ with LM™.

7
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The isometry group of LM™ is generated by the rotations and reflections given

by
(5 ot )

which leave (1,0,..,0) fixed, and by a family of hyperbolic translations given e.g.
by

coshs sinhs

sinh s cosh s

{T, = ‘ | s e R}.

1
The distance d(x,y) of two points z,y € LM™ is given by

d(z,y) = arccosh([{x, y), |).

Proof. . Theformulais true for x =(1,0,..,0) and all points y =(cosh s, sinh s,0,..,0),
s € R. Two arbitrary points x and y can be moved into the special position by
hyperbolic isometries which do not change (x,y), therefore also d(z,y) remains
constant.

Lemma 1 [distance, angle of two geodesics]. Let v and § be two geodesics in

LM? with unit normal vectors N, and Ns. Then the term ‘<Nw N5>L‘ determines
the relative position of v and §:
If‘(NW, N5>L‘ > 1, both geodesics have a distance

d(v,6) = arccosh(‘(Ny,NgL’).
If‘(N,Y, N5>L) < 1, both curves intersect at an angle
a(y,0) = arccos(‘(Nw,N(g)L‘).

The case ‘ (N, N&)L‘ = 1 occurs when both curves have a point on S in common.

1.1.2. Geodesic connecting two points. The unit speed geodesic vy con-
necting two points p,q € LM™ has initial direction in p :

’7/(])) _ <p7Q>L 2p+q .
(p,q)p — 1

Let y = (Yo, Y1, .-, Yn) € LM™ be an arbitrary point with distance d(O, y) =

arccosh ¢ from the origin. The unit speed geodesic v connecting O and y is given
by
v(s) = coshs-O + sinhs-t,s€[0,dO,y)]
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2

1
t:= 0,41, Yn)
Yo — 1

where ¢ is the initial direction of ~.

1.1.3. Rotation around a geodesic through O. In LM? arotation around
a geodesic through O with initial direction ¢ = (0,%1,%5, t3), |t|, = 1 of an angle
« is given by

1 0 0 0

0 (1—cosa)tyt;+cosa (1—cosa)tity+t3sina (1 — cosa)tits — tasina
0 (I —cosa)tity —tzsina (1 —cosa)taty +cosa (1 — cosa)tats +1t1sin a
0 (1—cosa)titz+tasina (1 —cosa)tats —tisina (1 — cosa)tsts + cos

1.1.4. Rotation around a point in infinity. Rotation around a point in in-
finity moves all points in LM? along parabolas. Let p=lim,,_,(coshu,0,sinhu) €
S°°. Then rotation around p is given by

) (reE e )
Otp—(00.0,00)(8) = k 52 ) ) (1.1)
=5

1.1.5. Rotation of (0,1,0,0,) to (0,t1,t2,t3) in ToH?>. Lett = (0,t1,t2,t3) #
(0,—1,0,0) then the unique rotation matrix mapping (0,1,0,0) to ¢ around the
axis (0,0,t3, —t2) in To H® is given by

»w = »n

1

s
-
2

1 0 0 0
0 t, —ty —t3

R = +2
0,(0,1,0,0) —t 0 ty 1 _1_+‘r _1Jtrt1
ol  ——
0 ts 1+t 1+t

1.1.6. Translation along the geodesic connecting O and a point. Let
v = (Y0,Y1,Y2, ¥3) be an arbitrary point lying on a geodesic through O with
initial direction t = (0,;,t5,t3) # (0,—1,0,0) in O. Then the translation along
the geodesic v connecting O and y is given by

TO—»’y(s) =R o Ts o 'R

0,(0,1,0,0) ——t 0,(0,1,0,0)——t

/ cosh s t;sinh s ty sinh s t3 sinh s \
tysinhs t3(coshs—1)+1 tty(coshs—1)  tt3(coshs —1)

L tysinhs  tyty(coshs —1) t3(coshs — 1)+ 1  tytg(coshs —1) J '
tysinh s ttz(coshs —1)  tytz(coshs —1) 3(coshs—1)+1



10 Konrad Polthier

1.1.7. Totally geodesic hyperplanes and normal vectors. Every vector
N € R} with (N, N), = 1 determines uniquely a totally geodesic hyperplane
HN via

Hy={pe LM" |(N,p), = 0}.

The map {N, —N} — Hy is a bijection between the set of all normal vector
pairs and all hyperplanes. The vector N of a hyperplane Hy is independent of
the base point and therefore well-defined.

Given three points P,@Q, R € LM?3 not lying on a single geodesic. The normal
vector N of the hyperplane spanned by P,Q, R is determined as the solution of
(P,N), = (Q,N), = (R,N), =0, (N,N), = 1. Writing P = (po, p1,p2,p3),
Q = (qo0, q1, @2,q3), R = (ro,7r1,7r2, r3) this leads to a linear system of equations

Po Go To —Ugp
b1 &1 " Uy

=0
P2 G2 T2 Uz
b3 g3 T3 Uus
which is solved by
P11 g1 T P qo To Po Ggo To Po qo To
U = | P2 G2 T2 |, U1 =| P G2 T2 |, U= —|P1 G T1 |[,Us=| D1 Q1 T
b3 g3 T3 Pz Gz T3 b3 g3 T3 P G T2

After normalizing the solution vector we obtain the normal vector N by

1

N = (uo,u1, uz,us) - )
—ud +uf +ui+ 43

The minus sign of ug in the matrix of the equation reflects the Lorentzian scalar
product.

1.1.8. Reflection at a hyperplane. Let N = (ug,uy, up,u3) be the normal
vector of an arbitrary hyperplane Hy C LM3?. Then the hyperbolic reflection at
the hyperplane Hy is defined by

reflection
—— P—-2(P,N),-N, Pc LM?>.

This is a linear map Sy =id—2( . ,N); - N whose matrix Sy is given by

1+ 2u? —2ugu; —2uguy —2ugug
2ugu; 1 — Zuf —2uiuy —2uqug
Quguy  —2uuy 1 — 2w —2uyug
2uous  —2uiuz —2u2uz 1 — 2u§
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1.2. THE POINCARE BALL MODEL

The Poincaré model PM™ of hyperbolic space H" is the interior of the n-dimensional
unit ball in R*™!. The asymptotic boundary is denoted by S*. The metric given
by

4

(1= 1)

is conformal to the Euclidean metric. Totally geodesic submanifolds are intersec-
tions of those Euclidean spheres with PM™ which intersect S orthogonally.

ds® = dx?

Let z,w € PM? be two complex numbers. Then the distance function d is
given by

11— zw| + |z — w|

Az w) =g T T

and the isometry group is given by

{z o 22 c} U {z — az——:_—_c} where |a|> —|¢[* =1, ac e C.
a

cz 4+ cz

The isometries of PM? extend naturally to S*°. Identifying S with C via stere-
ographic projection, the hyperbolic isometry group is isomorphic to the automor-
phism group of C.

The Poincaré model may be obtained from Lorentz model LM™ by central
projection of LM™ with center (-1,0,..,0) onto the interior of the unit ball in the
hyperplane {zy = 0} . This projection is conformal.

1.3. THE KLEIN BALL MODEL

Using a different projection we obtain the Klein model K M™. It also sits inside the
n-dimensional unit ball in R™*! but the metric is not conformal to the Euclidean.
Using (0,..,0) in R}™" as a center the Klein model is obtained by projecting LM"
into the interior of the unit ball of the hyperplane {z, =1} in R?*. Totally
geodesic submanifolds are intersections of Euclidean planes R? ! with {xy = 1} .

Let p,q € KM"™ be two points inside the unit ball. Then their hyperbolic
distance is given by

_ 1 —(p,q )
d(p,q) = arccosh 5
) (27(1 1P - (L )

where the Fuclidean metric is used on the right side.
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1.4. THE UPPER HALFSPACE MODEL

1.4.1. The model. A further model of H" is the upper halfspace model
UH M™. Tt consists of the open upper halfspace {z,, > 0} in R" with the metric
ds* = o) da?.
The hyperplane {z, = 0} U oo is the sphere at infinity S>°. Totally geodesic
submanifolds are all half spheres and half planes intersecting S orthogonally.
Hyperplanes parallel to {z,, = 0} are horospheres with constant curvature 1. Eu-
clidean planes are hyperbolic spheres with constant curvature x € [0, 1] depending
on the angle under which they intersect S*°. See lemma 3.
In dimension 2 the UHM 1is part of the complex plane and the distance
function between two points is given by

|z — | + |z —w]

d(z,w) = log Py —

The isometry group is given by

b —az +b
{z}—>az+ }U{zH&},ad—bc>0, where a, b,c,d € R.

cz+d —CZ +d
1.4.2. A translation inthe LM, PM and U HM. A translational isometry

cosh r sinh r

peLM" — ‘ ) p

1
\ sinhr coshr }

in LM"™ along the geodesic (coshr, 0, ..,0,sinhr) translates in PM™ along the
geodesic through (0,..,0) in direction z,, and in UHM™ along the geodesic through
(0,..,0) in direction z,, by

1
cosh r — sinh r

p e UHM" — p=¢e -p.

So the orbits of this translation are Euclidean straight lines with center (0,..,0).
Intrinsicly these lines are circles with curvature x € [0,1) . In UH M? those circles
with k € (0,1) may be parametrized by arc length s via

’)/H(S) _ eS'SiIlOt X ( COS > 7 S e R

sin «v

where k = cosa and « is the Euclidean and hyperbolic angle under which ~
intersects 5.
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1.5. PROJECTION BETWEEN STANDARD MODELS

During the numerical computations we used the following maps and their differ-
entials between the different models. We list them as a reference.

1.5.1. Lorentz model and Poincaré ball. Central projection with center
(-1,0,..,0) into unit ball in {zo =0} :

LM" — PM" (a:o,---,:vn)H(O"" '“')

P 4wo? T 1o

PM™ — LM™ Y=Y, tn)— &, 1+ ys, ..., (1+t)y)

. N R _ N I 2
with ¢t := s t+1——2—1_|y|2 , by, = 6yit—yz(1+t)
tyl ty2 e tyn
by, g +1+18 ty -y - - by, " Y1
and differential . . .
byt * Yn tys Yo+ - Ly, Yn+1+1

1.5.2. Lorentz model and Klein ball. Central projection with center (0,..,0)
into the unit ball in {zy = 1} gives a map from LM" into KM™" :

LM" — KM (3g,..my) = (1,2, %)

T o
KM"™ — LM" Yy = (yla"'7yn)H(t7ty17“'7tyn)
with ¢t =(1- |y|2)_42', by = 6th =y - 13
tyl tyz tyn
byp i+t ty -y - - by,
and differential . . )
ty1 *Un tyz “YUn - tynyn+t}

1.5.3. Poincaré ball and upper halfspace. A Mobius transformation may
be used to transform the Poincaré ball PM? in UH M?

PM? — UHM? 7+ —j <=

where ©1+—o00, 01, —ir— 0, +1— +1,

and in general by

. . 221 20 11 al?)
PM"™ — UHM (1'1; ey xn) = 2344z Hxn—1)2 -

The inverse mapping is given by

n (2y1....2un _1.ly[2—1)
UHM" — PM (Yt ey Yn) 7 gy s AR
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1.5.4. Klein ball and upper halfspace model. The previous transforma-
tions may be composed to get a map from Klein ball K M™ into UHM™ :
2

144 /1—|z|2

KM"— UHM" (T1, ey Ty)

1—xp,
201, 2Un—1,lyl 2 =1
UHM" — KM"  (y1,...,yp) > St =)

1.5.5. Lorentz model and upper halfspace model. This transformation
is of a very simple form:
LM» — UHM"  (xq, ..., x,) o Siesta=ld]

To—Tn
(It y 2y, 20 1yl —1)
UHM" — LM" Y1y ey Ypy) 1 il Qy: e

1.5.6. Poincaré ball and Klein ball. A transformation between both ball
models is given by the following maps:

PM™ — KM" (21, ooy X)) > =2 (T, 0, T

1-|o[?

KM» — PM™ (Y1 oy Yn) m(yl, ey Yn) -

1.6. HYPERBOLIC TRIGONOMETRY

Without proof we list the following frequently used hyperbolic trigonometric for-
mulas. For a detailed study of hyperbolic trigonometry we refer to the nice book
of Beardon [3].

Let A be a hyperbolic triangle in LM™ C R} with vertices A, B,C € LM",
side lengths a,b,c and angles «, 3,7 as indicated in figure 1.1.

The following relations hold:

area(A) = wT—a—0F—7
coshe = —(A,B),

(AC) (B.C) +(AB),
\/1—<A,C)i\/1—<B,C>%

cos7y

Sine Rule: h b b
sinha _ sinhb _ sinhc (1.2)
sina sin 3 sin -y
Cosine Rule I:
cosh ¢ = cosh a coshb — sinh asinh bcos~y (1.3)
Cosine Rule II:
coshe — cos v cos [3 4 cosy (1.4)

sina sin 3
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1.7. CIRCLES IN HYPERBOLIC SPACE
In the comparison theorems for planar curves in chapter 6 we compare planar
curves with arcs of hyperbolic circles. Here we discuss circles as orbits of hyper-
bolic isometries and derive some other useful properties for later use.

Circles in hyperbolic space are planar curves with constant curvature. As an
effect of the intrinsic negative curvature of H", there exist three types of circles
in H? and three types of hyperspheres in higher dimensions depending on their
curvature k. E.g. in LM? circles are represented by Euclidean circles, parabolas
and hyperbolas on LM? C R3.

1.) Let k € (1,00) and 7, a circle with curvature k. Then ~, is a Euclidean
circle in all models of H? we have discussed. In LM? ~, may be given as the
orbit of a rotation with center O. Parameterized by arc length s, we obtain

( 1 \| ( coshr \|
Vel(8) = \ cos$ — sin === \ sinhr |, s €[0,(]
SIn sinh r CO8 sinh r 0
with radius r = arccothk
perimeter [ = 2wsinhr
area Q = 2m(coshr — 1) = 47 -sinh’&.

If the curvature k decreases to 1, the radius becomes infinitely large. In the limit,
k =1, we obtain a horocircle (or horosphere in higher dimensions) whose center
lies on S°°.

For additional formulas concerning a sector of a hyperbolic circle compare
lemma 31 in chapter 6.

2.) An arc length parameterization of horocircles with k = 1 may be easily
obtained by using the UH M™. Euclidean straight lines parallel to x,, = 0 are
horocircles with center in co. Let

denote such a curve in UH M? with arc length parameter s and at a constant
height r = 5. These curves project into LM? to a horocircle

( 2 sQilgil \
2r
Ti(s,r) = ( s ) , s arc length.

r2(s241)—1
2r

Substituting

r =coshx + sinhx =¢€* |, = =coshz - sinhz

s 1=
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such that

1+7° —1 472
Rl Hcoshx,%esinhx
r

we obtain an arc length representation of a family of horocircles in LM? around
the point on S, which is the limit of (coshz,0,sinhz) for z — oc:

2
(%-e“”+coshx \|
T(s,z) = S )
\ i . e % 4 gnhz }
2

x is the distance of the circle v (., ) to the origin O = (1,0,0,0). Rotation around
a point on S is described by the map 1.1. This circle is not closed but both
ends have the same limit on S°°. In the P M such a circle is a Euclidean circle
tangent to its hyperbolic center on S*.

3.) Rotating around a point p beyond infinity leads to circles with curvature
k € [0,1). Consider PM? or KM? and the two Euclidean lines through p and
tangent to S°°. Segments of Euclidean circles through the two points of tangency
on S are hyperbolic circles with curvature x € [0,1). They do not close in
H?. The circles are orbits of the unique geodesic § connecting the two points of
tangency. Assume ¢ is given by 6(s) = (coshs,sinh s, 0), the translation along 6
by
coshs sinhs 0
T(s) = sinhs coshs 0
k 0 0 1 )

and let

( cosh r \

q= 0 € H?
ksinhr)

be a point of distance r to 6. Then the orbit 7, of ¢ is a circle of curvature
k €[0,1) given by

( coshs sinhs 0 \| (coshr \
Ye(s) = | sinhs coshs 0 0
o o0 1)\ smnr)

with distance r = arctanh x of ¢ to 7.

The following lemma derives the cone angle under which a hyperplane appears
in a hyperbolic view (see figure 1.2). The formula gives the opening angle of the
cone enclosed by the geodesics through a point and the asymptotic boundary of
a hyperplane in H".
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Lemma 2 [cone angle]. Let v be a geodesic with endpoints q,,qo € S and
p & v a point in H2 Then the geodesics 61,0, connecting p with q;,q, form a
cone with angle v given by
cot2 =sinhr
2

where r = dist(p, 7). Furthermore for a given geodesic «y all points with the same
cone angle 1 lie on a circle through q,q, with curvature x = tanh r and distance
T to 7.

Proof. . The geodesics 7,0;,0, form a hyperbolic triangle with two ideal
points, i.e. two triangle angles vanish. Using Cosine Rule II we obtain the
proposed formula.

The second statement follows immediately from the invariance of the formula
under the position of the circle 7, with k = tanhr.

We now derive the angle between a hyperbolic geodesic and a circle joining
the same two points on S (compare figure 1.2).

Lemma 3 [angle at co]. Let v be a geodesic and vy, a circle with curvature k €
[0,1). If both curves have the same two points on S* as asymptotic boundary,
then the asymptotic angle ¢ between both curves is given by

tany = sinhr

where r := dist (6,7,) = arctanhx .

Furthermore each geodesic 6, or 65 through one of the asymptotic boundary
points and intersecting . somewhere else in a point p encloses the same angle ¢
at the intersection point p with 7,..

Proof. . The angle ¢ at p between 61,62 and 7« can be obtained using the
result of lemma 2 on the cone angle ¢ between 6; and d,. v is parallel to 6,6y
at S, and 61,02 and v, are circles in the conformal Poincaré model. Therefore
the angle between v and 7, at qi, g2 is the same ¢ as between 61,0, and 7, in p.

1.8. ProbpucT OF TWO ROTATIONS
In this section we consider the effect of a product of two rotations in the hyperbolic
plane and derive formulas for the occurring angles. We use these results in the
proof of the comparison theorem for planar curves in chapter 6. Let

g =roty(0)
h = rot,(¢)
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be two rotations around disjoint center points p,q € H* and angles 6 and ¢. As
in the Euclidean case the product hog results in either a rotation around a center
s or in a translation. We write g and h as a product of two reflections

g= 0200,
h =040 03

where the lines of reflection o; and o5 resp. o3 and o4 enclose angles % resp.

%. We choose the two lines of reflection o5 and o3 to be the unique geodesic o
connecting p and g. Then the product h o g is given by:

hog=o0400;.

Lemma 4. The product of two rotations g and h results in one of the two fol-
lowing cases:

e if oy and o4 intersect in s € H?>U S*, then h o g is a rotation around s

e if 01 and o4 do not intersect, then ho g is a translation along the shortest
geodesic T’ connecting o, and oy.

In the special case of two rotations g and h around center points p and ¢ with
angles # and -6 the product ho g is a translation along the shortest geodesic T'
connecting oy and o4. T' is orthogonal to o; and o4 and it encloses with o; and
o resp. o4 and o two conformal, and therefore congruent triangles. From this
and from the use of the sine rule and cosine rules 1.2, 1.4, we have the following
equations for the distance of translation d = 2 - dist(01,04) and the angle & — 0
enclosed by T" and o (compare figure 1.3):

tan 6 = cot (%—5) :coshw-tan% (1.5)

d dist %
sinhz = sinhw : sina (1.6)
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Figure 1.1: Notation in a Hyperbolic Triangle

Figure 1.2: Cone Angle Under Which a Hypersurface Appears From a Point
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Figure 1.3: Product of Two Rotations




Chapter 2

Properties of Hyperbolic
Minimal Surfaces

In this chapter we recall well-known results for hyperbolic minimal surfaces. We
give the notion of minimal surfaces in parametric and non-parametric form since

we will use both. When deriving the geometric a prior estimates in chapter 4 we
use the parametric form, while the proof of the existence theorem 29 is based on
the minimal surface equation 2.1 in the non-parametric form.

2.1. THE HYPERBOLIC MINIMAL SURFACE EQUATION

We call a surface M C H? in the upper halfspace model a graph if M projects
1-1 along the vertical lines on a domain 2 C C. Then M can be represented by
a function

f:Q2—-R.
The hyperbolic area of M over compact subsets K C 2 is given by

P
area(fK):A{Mdz

f2

The hyperbolic minimal surface equation for M resp. f is the Euler-Lagrange
equation of the above variational integral, where (z,y) are local coordinates in

Q:

201+ f2+f2)
f

The equation consists of the terms of the Euclidean minimal surface equation
and an additional quotient. It is a quasilinear, non-uniformly elliptic equation
with singular behavior when f tends to zero. This is the case at the asymptotic
boundary of M.

In chapter 5 we will study this differential equation in greater detail. There
we consider boundary data

(L4 f) fow = 2fafyfoy + L+ f2) fyry + — 0in Q. (2.1)

0: 00— Ry

21
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on 0f) which is positive but may also be zero, i.e. we need to get control of the
singular behavior of the equation. This will be possible since the geometry of the
solutions can be controlled.

Additional properties immediately follow from the hyperbolic geometry. Half-
spheres with center p € C and radius r given by

for(2) =12 = (2 — p)?

are trivial solutions. Also the scaling invariance w.r.t. a point p € C is an
immediate consequence of the effect of a hyperbolic translation along the vertical
geodesic through p, whose orbits are straight lines through p. See section 1.4.2.
Therefore, if f is a solution of 2.1 then also f, defined by

, Qr={2€C|rzeQ},

where we have chosen p = 0 € C. Since the translation is an isometry we have
further

area(fyo,) = area(fin).

2.2.  ASSOCIATED FaMmiLy
Let M? be a simply connected piece of a Riemann surface. Then the map

F:M?>— H?

is a minimal immersion iff the mean curvature H of F((M?) vanishes identically.
Let F' denote a minimal immersion in the following. We denote with ¢ the

induced metric on M and with S the Weingarten map defined by g(Su,v) :=<

OF -u,0ON - v > for tangent vectors u and v of M and normal vector N of F(M).
Then for each such F there exists an isometric family

Fo: M* — H? 0 € [0,27]

of minimal surfaces with geometric data

¢ =g
S0 = D°.g,

where D? denotes the rotation about @ of the oriented tangent plane in M?. Since
F'is minimal, the tensor SY is also symmetric with trace S = 0. The family F°
is called the associated family of F, and the map F'% is called the conjugate
immersion of F.
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Minimal surfaces in simply connected three dimensional spaceforms have a
nice symmetry property in common. If a minimal surface has a boundary arc
which is part of a geodesic of the ambient spaceform then the surface may be
extended to a larger minimal surface by rotating a copy about 180° around the
geodesic. If the surface contains a boundary arc which is a geodesic of the surface
and lies in a hyperplane of the spaceform, then the surface may be extended by
reflection at the hyperplane.

Both methods extend the original surface analytically across the boundary
arc. These properties were originally discovered by H.A. Schwarz for minimal
surfaces in R? and later extended by Lawson [19] to minimal surfaces in space-
forms.

In this notation the Frenet data of a geodesic F? - ¢ with the frame (OF? -
¢, N,OF? . D%¢) on a minimal surface is given by
curvature(c) = w’ = g(S%¢) = —r%
torsion(c) = 1% = g(S%,D%¢) = K%,

Therefore a straight line is a planar geodesic on the conjugate immersion and
vice versa a planar geodesic becomes a straight line.

2.3. MAXIMUM PRINCIPLE

The maximum principle for surfaces of constant mean curvature in spaceforms is
a powerful tool and we will apply it frequently through our constructions.

Definition 5. Let M and N be two hypersurfaces in H® with first order of
contact at an interior point p, i.e. p €M N N and the tangent planes in p
correspond T,M =T, N. Then we say M lies on one side of N :< when writing
M and N locally as a graph over the tangent plane with function fj; and fy then
far = fyvor far < fn in a neighbourhood of p.

There exist a number of different proofs for the following maximum principle.
We cite Eschenburg [7], who uses mostly geometric arguments in his proof:

Lemma 6 [Maximum Principle]. Let M and N be two smooth hypersurfaces in
H? with the same constant mean curvature and common point p in the interior
or on the boundary of M resp. N. If M lies on one side of N in a small neigh-

bourhood of p, then M and N are identical close to p, and therefore analytic
continuations of each other.
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2.4. A SYSTEM OF DIFFERENTIAL EQUATIONS

Let FF: Q C R? — LM? C R} be a conformal parametrisation of a hyperbolic

minimal surface. Using local coordinates (u, v) on Q2 we denote the induced metric
on 2 with

ds® = E(du® + dv?)
and the second fundamental form with
IT = e(dv® — dv®) +2fdudv.

Then F' satisfies the following system of equations

L, —L
F,, E s == —e
F
L L,
E,
FE, |=|FE =& & ¢ | (2.2)
Fy
N, 0o <« £ 0
N
N, 0o £ = 0

where F, its partial derivatives and N are given as vectors in R} and the triple
(F., F,, N) is positive oriented.

Using the system of equations and the Mainardi-Codazzi equations e, + f, =
e, — fu = 0 we immediately obtain two elliptic equations

AF =2F
AN =— |APN

where A = JE'(&W + 0,,) is the laplacian on Q w.r.t. the induced metric and
Al = '&E%LZ the norm of the second fundamental form.

2.5. CONVEXITY AND CONVEX HULL
We note some useful properties of minimal surfaces in H? concerning their convex
hull. The main ingredient in the proofs is the maximum principle.
The definition of p-convexity for curves on the asymptotic sphere will be used
in the specification of admissible contours I' € H3U S for the existence theorem
29.

Definition 7. A halfspace H of hyperbolic space is defined as one of the com-
ponents in which a totally geodesic plane P divides H® U S*®. The halfspace
includes the plane P and its asymptotic limit.

The convex hull C(S) of a subset S C H3U S* is defined as the intersection
of all closed haltspaces H containing S.
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Lemma 8 [Convex Hull Principle]. Let I' € H® U S be the boundary of a
regular minimal surface M in H®. Then

M ccC).

Proof. . Let P be a hyperbolic plane dividing H? into two open halfspaces
H* and H~ such that C(I') C H~ U P. We show by contradiction that M must
also liein H~ UP.

Assume MNH™T # (). Then there exists a point ¢ on M N H* having maximal
finite distance from P. The tangent plane 7; M locally bounds M to one of its
sides and is therefore a contradiction to the maximum principle.

Lemma 9. Let ' C S be a curve and the boundary of a regular minimal
surface M in H®. Then
=5*nC(M).

Proof. . Foreachpoint ¢ € S®\I" we can find a hyperbolic plane separating
H3US* into two components such that g and M lie in different halfspaces. In the

Poincaré model a small Euclidean sphere around ¢ would give such a hyperbolic
plane. Therefore ¢ ¢ C'(M).

We need the term ”convex” for subsets on hyperbolic spheres and on S°°.
This term is well-defined for spheres by their intrinsic geometry, but for a useful
definition on S°° we need to specialize.

Definition 10. A compact closed curve I on a sphere S C H?3 of constant curva-
ture k > 0 is convex & every totally geodesic plane intersecting S orthogonally
and of tangency to I restricts I' to one of the halfspaces defined by the plane.

This definition agrees with the intrinsic term convex of the sphere. We extend
it to curves on S™ in the following way:

Definition 11 [p-Convexity]. Let p € S be a point in the asymptotic boundary
of H3. A compact closed curve I' C S is p-convex :& every totally geodesic
plane containing p, whose asymptotic boundary is tangent to I', restricts I' to
one of the halfspaces defined by the plane.

When projecting H? into the UH M with p — oo, a p-convex curve I' C S
not containing p projects onto a curve in C which is convex w.r.t. the Euclidean
metric of C. Vice versa, each convex curve in C in this UHM is p-convex, but
in general not convex w.r.t. the spherical geometry.

Our definition of p-convexity uses the intrinsic geometry of hyperbolic space
instead of the Euclidean metric on C. Later we will need the property "p-
convexity” w.r.t. different points p € S°°, therefore a definition not depending
on a specific UH M is advantageous.



Chapter 3

CO-Estimates for Minimal
Graphs

The C?-estimates we use in our work base on a comparison of a contour or a
minimal surface with a well-known minimal surface and the application of the
maximum principle. In section 2.5 we discussed the convex hull property as the
simplest C%-estimate. In the following we make this property explicit for minimal
surfaces given as a graph in the UH M and obtain C° bounds for the solution of
the minimal surface equation 2.1.

In theorem 24 we use the translated copy of a given minimal surface as a bar-
rier. Other useful barrier surfaces are the hyperbolic catenoids and the helicoids,
since they are embedded, explicitly given and occur as a 1-parameter family. The
conjugate surface construction for minimal surfaces in chapter 8 relies on our abil-
ity of estimating the turning angle of the surface normal against a parallel vector
field along a straight boundary arc. For this estimate we use hyperbolic helicoids
having the straight arc as their soal and keeping the minimal surface to one of
its sides. We discuss this in more detail in the chapters 6 and 8.

In case of minimal graphs in the upper halfspace model we can specialize the
convex hull property to a more explicit statement. We use hyperbolic planes as
barrier surfaces and obtain C° bounds in terms of the domain  and the boundary
curve I

In the following we use two different measures for the distance of two closed
bounded sets K and L in a metrical space 2. Let p € K, then we have

dist(p, L) := mindist(p,q)
qeL

where dist(p, q) is the distance of points in Q. With this, we define

dist(K, L) := miny,cx dist(p, L)
and
DIST (K, L) := maxye g dist(p, L).

dist(p, L) specifies the shortest distance between points of K and L, whereas
DIST(K, L) is the longest distance between points of K to the set L. In general,

DIST is not symmetric in its arguments.

26
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Lemma 12. Let Q C C be a bounded domain in the UHM?, K CCSOZ a com-
pactum and f : @ — R a minimal graph over ) with boundary ' : 00 —
[0,G] C R with constant 0< G < co. Then there exist constants

C1(Q, K) = dist(K,00) and
Cy(Q,T) 1= /G2 + ddiam20)
such that
Vze K: 0<Ci(Qk) < f(z) <Cy(,T) < 0.

Proof. . By the convex hull principle 8, a minimal surface in H? will lie
on one side of a hyperbolic plane as long as its boundary does. Let p € K and
consider an ”infinitesimal” hyperbolic plane, i.e. a small Euclidean halfsphere in
the UH M with center p. I'and therefore f(£2) will lie on one side of the sphere
as long as its Euclidean radius is less then dist(K,0f2). This proves the lower
bound.

To get an upper bound we argue in a similar way using a barrier sphere from
above: the cylinder d x [0, G] can be covered by a halfsphere of radius bigger

than \/G2 + %diamQQ.

The estimate of lemma 12 remains true, if f is not a graph. Let f be a mini-
mal surface with given boundary I', I defined as in the lemma as the boundary

of a bounded domain €. The projection of f may cover a larger set ' containing
Q and f being multivalued on €. Let K C C a compactum with K N 9Q = 0,
then the estimates of lemma 12 hold with the same constants.

Lemma 12 gives a rough estimate of f since e.g. (> is a global estimate of f
over ). The following lemma gives a better estimate by taking into account the
trigonometry of the barrier spheres.

Lemma 13. Let ) C C be a bounded strictly convex domain in the UH M, K CC{OZ
a compactum and f :  — R a minimal graph over €} with boundary I' : 0} —
[G1,Gs] C R with constants 0< Gy < G5 < 00. Denote with Ky, the euclidean
minimal curvature of I'. Then there exist constants
Ci(Q,K,T) = \/G3 + dist2(K,09)
Co(Q, K, T) = /G3 + DIST(K,09) - (2= — DIST(K,09))
such that
VzeK: 0<Ci(Q K T) < f(z) <Co(QK,T) < 0.

Proof. . Let ¢ € Q an interior point and ¢’ € " a point which has minimal
distance to ¢q. Let L denote lifting by G5 in the vertical direction. Then L(0f2)
lies above I We can cover L(0f)) by a Euclidean halfsphere which is tangent
to L(09) at L(q) and whose circle of latitude through L(q') at height C> has
curvature H—l From this we immediately obtain the constant Cj.

min



Chapter 4

A Priori Gradient Estimates

In this chapter we will prove a priori gradient estimates at interior points of
minimal surfaces in H?3 in terms of their boundary. The surfaces must be bounded
and of disk type, but we do not assume them to be given as graphs. We will argue
geometrically and get a priori estimates by restricting the set of possible directions
of the normal vector at interior points of the surface.

Our method originates in T. Rado’s ”four point condition” and uses ideas
from Lawson’s generalization [20] to minimal surfaces with boundary in S3. The
corresponding ” Hyperbolic Four Point Condition” is a special case of our theorem
17: Given a simply connected non planar minimal surface with boundary, then
the intersection of each tangent plane with the boundary consists of at least four
different components.

Reversing the implication of the statement we can exclude all totally geodesic
planes with less than four disjoint components in common with the boundary
from being tangent to the surface somewhere.

We use the hyperbolic four point condition to prove our main gradient esti-
mates in theorems 18 and 19. The estimates are valid for minimal surfaces with
boundary contours satisfying a certain convexity property. The theorems do not
assume that the surfaces are given as graphs. This will be proved. For contours
with such a convexity property uniqueness of the minimal surface is not known
and is false in general.

In theorem 20 we prove an additional estimate for minimal graphs over strictly
convex domains.

4.1. A SuB/SuPER HARMONIC FUNCTION

In the following we let
F: M — H*CRj]

be a conformal non planar minimal immersion of a simply connected Riemannian
surface M with boundary OM into hyperbolic space H>.It is a essential condi-
tion that H? is embedded in an ambient space with vector space structure. For
convenience we work with a compact M C C.

We assume further that F'is regular and real analytic in the interior and that
no interior branch points occur. If F' is a Morrey solution to a Plateau problem

28
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these assumptions are fulfilled by Morrey [25] and Gulliver [9]

Lemma 14. Let F' be a minimal surface as above with local coordinates u and
v. Then
AF =2\ F, (4.1)

where A = 79%-22 + 5‘% is the Laplace operator of the Euclidean metric in the

domain and \ is the conformal factor of the induced metric.
Proof. . The relation follows immediately from the Frobenius system for
hyperbolic surfaces 2.2.

We will now define a function on M which is sub or super harmonic on well de-
fined regions. In Euclidean space such a function could be immediately obtained
since all coordinate functions of a conformal minimal immersion are harmonic.
We adapt here a construction used by Lawson in S*. It depends heavily on
the embedding of H? into the vector space structure of R}. Let P be a totally
geodesic plane of H* in R} and let Np € R} be one of its two normal vectors.
By section 1.1.7 the normal vector to a specific plane does not depend on the
base point. The plane P can now be written as

P={pe H®|(p,Np), = 0}.
From these remarks we can define a real valued function fp on M by
fp:=(Np,F), :M — R. (4.2)

The following lemma shows that this function can be used as a substitute for the
harmonic functions available in Euclidean space.

Lemma 15. Let F': M — H? C R} be a minimal surface, P a totally geodesic
plane and fp the function defined above. Then fp is super resp. sub harmonic
in open connected sets where fp > 0 resp. fp <0, and therefore satisfies a sharp
maximum resp. minimum principle.

Proof. . Subresp. super harmonicity of fp follows directly by applying the
Laplace operator A to the defining equation 4.2. Since Np and (., .); are parallel
with respect to /A we obtain by using lemma 14

AfP:<Np,AF>L:2)\'fP. (43)

1.)Since thesign of fp depends on the choice of the direction of Np the application
of the maximum principle of lemma 15 is independent of the sign of f in a domain
of interest.

2.)The comparable equation to 4.1 in S? has a different sign. This has greater
effect than just changing sign in all equations in H3. In H?® we have fp > 0 =
maximum principle, while in S? we have fp < 0 = minimum principle. This

leads to two different situations, whose non-existence is proved by using lemma
15 (see figure 15).
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4.2. HYPERBOLIC RADO’S LEMMA

After this preparatory discussions we will now extend Rado’s ideas to minimal
surfaces in H3. The following lemma 16 and theorem 17 are generalized from
Lawson [20] to H>.

Lemma 16. Let C =1~ '(P) be the preimage of the intersection of 1)( M) with

a totally geodesic plane P. Then for every component O of M \C, the set 0O NOM
must contain an interval.

Proof. . The proof works by a contradiction to the maximum principle.
Let Np be the unique normal vector of P, such that

P={ze H*| (Np,z), = 0}

and let fp be defined by
fp = <NP">L .

A component O of ]\j_/ \C'is then a component of
{x E]\Oﬂ fp(z) > 0} or {x 6]\0/[| fr(x) < 0}.

We assume fpjo > 0. Along 00N M fp clearly vanishes. Therefore, if 0ONOM =
0 or friponom = 0 then fpo has an interior maximum in contradiction to the
maximum principle of lemma 15. It follows that there exists a p € 00 N oM
with fp(p) > 0. By continuity, fp > 0 in some neighbourhood U of p. Since 1 is
continuous at the boundary oM NOO D M N JU contains an interval.

The following theorem is a generalization of a well known lemma of Rado
and its spherical version of Lawson. Rado proved his theorem for harmonic
functions on the unit disk (compare e.g. [5]). A special case of theorem 17 is the
”Hy perbolic Four Point Condition” mentioned in the introduction of this chapter.
The theorem is an essential ingredient for our later gradient estimates.

Theorem 17 [Hyperbolic Rado’s lemmal. Let /(M) be a non planar minimal
immersion of disk type with boundary in H3. If a totally geodesic plane P has
k-th order of contact with (M) at a point p €M, then Y~ (p)NOM has at least
2(k 4+ 1) components.

Proof. . Let Np be a normal vector of P. Then we can introduce a height
function f := (Np,1); as in equation 4.2. In local coordinates (u,v) for M with
center p is real analytic and its power series expansion about p is given by

fu,v) = fojmu, v)
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with homogeneous polynomials p; of degree i. By the assumption we have that
po = ... = pr, = 0. Let p;,1 be the first non vanishing polynomial. Since (M) is
minimal, equation 4.3 gives Af = 2\ f. Therefore Ap; ;1 = 0 and p;,; is the real
part of a holomorphic polynomial of degree [ + 1:

P = c-Re(e? w™)
= c¢-(cos@- Re(w"!) —sinf - Im(w!+1))

where w = u+ v and ¢, are constants. Consequently ¢~1(p) divides a neigh-
bourhood of p into 2/ + 2 open sectors such that f changes sign between two
adjacent sectors. Using the maximum principle one easily shows that no two
sectors can coincide. With the help of lemma 16 and because M is of disk type it

follows that M \1v"(p) and OM \ 1)~ (p) must have at least 21 +2 components.

4.3. GRADIENT ESTIMATES

An important application of our Hyperbolic Rado’s Lemma is the following state-
ment of embeddedness:

Theorem 18. Let M be a minimal surface of disk type with boundary I' C H3.
Suppose there exists a geodesic fibration of H* induced by a p-coordinate system
with center p € S such that the projection m along the fibers maps ' 1 —1 onto
the boundary of a p-convex set in S*°. Suppose further that for all p € I' the
fiber through p intersects T),M and is not tangent. Then

a) Vp € M the surface normal is not orthogonal to the fiber through p
a) Vp€ M the tangent plane T,M does not contain the fiber through p
b) M is embedded.

Proof. . The statements a and a" are obviously equivalent. We prove a .
Suppose there exists a point p € M with T, M containing the fiber through p. By
theorem 17T, M NI" and therefore T, M Nm(I") consists of at least four components.
This contradicts the fact that 7(I") is convex. This proves a .

Suppose M is not embedded. Then there exists a fiber having at least two
intersection points with M. Because M is embedded along I' and projects 1-
1 along a neighbourhood of T', from the regularity of M follows the existence of
a point p € M, where the fiber through p is contained in 7, M. This contradicts a.

The following theorem states our main gradient estimate. The estimates on
the normal vector are also gradient estimates for the hyperbolic minimal surface
equation 2.1. Since the equation is singular at the infinite part of the boundary,
such results do not directly follow from elliptic theory. The proof is based on our
Hyperbolic Rado’s Lemma.
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Theorem 19. Let py € S with open neighbourhood B C S*° such that 0B
is a spherical circle with center py. Let I' C H? be a Jordan curve which has V
p € B a 1-1 p-projection on a p-convex curves in S°°. If M is a minimal surface
bounded by I', then M is a graph and the angle o between the normal at a point
q € M and the po-geodesic through q is bounded from above by

a(q) < arctan(sinh dist(q, C(B))) =: Gmax(q),

where C(B) is the convex hull of B.
IfM' C M is a compact subset of M, then the normals at points of M are
uniformly bounded by

< arctan(sinh(;n:ﬁ(, dist(q',C(B)))) =: Qumax(M).
Writing M as a graph f : Q — R the above bound is equivalent to a C*-bound
for f:

Jgrad f,| = tan a(q) < sinh dist(q, C(B)).

Proof. . For a fixed point ¢ € M the geodesic through ¢ and points of B
form a solid cone which has an opening angle i) given by lemma 2

cot % = sinh dist(q,C(B)),

where C(B) denotes the convex hull of B. Because of the projection property of
I we can apply corollary 18. Therefore no geodesic of the cone through ¢ can be
tangent to M in q. Together with the value of the cone angle ¢ we obtain an
upper bound ., (q) for the angle of the normal at ¢ with the py-geodesic by

Oomax(q) = % — %

This proves the theorem.

We consider now a minimal surface with strictly convex boundary curve on
C in the UH M. We obtain an explicit gradient estimate by purely geometric
reasoning for the hyperbolic minimal surface equation. The situation with I' C
S>is much easier to handle than the situation I' C S U H? since one can use
translated copies of the minimal surface as barriers. Compare theorem 24.

Lemma 20. Let I' C C CS* be a strictly convex curve in the upper half space
model bounding a domain €2 C C. Further let M be a minimal surface with
asymptotic boundary I and p a point on M. Denote with q the vertical projection
of p onto ) and with kmin the minimal curvature of I' as a Fuclidean curve.
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Then M is a graph and the angle o of the normal N,, at p with the vertical
direction is bounded above as follows:

a(p) < arccos(dist(q, T') - Kmin)-

Writing M as a graph u :  — R, this bound is equivalent to a C* bound for u :

\/1 — dist?(q, 1) - Ky,
dZSt(‘L F) * Kmin

‘grad u|q‘ = tan a(p) <

The estimate is sharp for circular domains, i.e.

d \/1 — dist? (Q7 F) ) ’%ﬁiin
‘gra U|q’ N dZSt((L F) * Kmin ’

q € .

Proof. . Assume there exists a point p € M, whose normal N, encloses an
angle @ > amax = arccos(dist(q,I") - Kmin ). We will show that then a one param-
eter family of minimal surfaces M; with boundaries I'; C S exists, obtained by
parallel translation of M along a hyperbolic geodesic v through p such that all
['; are disjoint, and that there exist ¢o, t; with My, NM;, # (). In such a situation
a standard argument applies: fix t; and move a copy of M, along v until both
surfaces are disjoint. Then move the copy back until both surfaces meet the first
time. Since the boundaries are disjoint, both surfaces have tangential contact at
an interior point contrary to the maximum principle.

Let T,,M be the tangential plane of a point p € M, whose normal in p encloses
an angle @ > Qmax with the vertical direction. We denote with ¢ the closest
point of T,M NS> to pin the Euclidean metric of C. Further let ¥ C T,M be a
hyperbolic geodesic containing p and ¢' and enclosing with the vertical direction
in p an angle & — a. Then the bound «;,,c ensures that ' is part of a Euclidean
circle with radius r > == : Let h be the Euclidean height of p over C and
6 = dist(q,I'). Then, usﬁé the inequality o > aax and the lower C° estimate
for h (see lemma 12), we have

h h h 1
COSQy  COS Opax O * Kmin  Kmin

(4.4)

r =

Additionally, the inequality & > Quay ensures that one end point of 4 lies inside
the neighbourhood Us(q) C 2. Let q, € C be the end point of 'y, closest to q.
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Then using the Euclidean distance we have:
dist(q,q) = r—~r*—h

— - — 2
S Kmin min h

Kmin ‘min max

< _]__h2

= dist(q,T") = 6.

The first inequality is true since the function is strictly decreasing in r and we
have by equation 4.4 a lower bound for r. For the second inequality we estimate
h from above by the upper C° bound hp,y := Cy = \/dist(q, F)(:j: — dist(q,T"))
of lemma 13, from which we immediately obtain the result.

We have now proved that the endpoints of 4 lie on both sides of M. Since v
is tangential to M we can find a geodesic 7 close to 4 in the Euclidean metric,
which starts in Us(q), has radius r > H—]- and intersects M at least two times
in interior points p; and py;. We now pran?allel translate M along ~ in direction
away from ¢g. Then each trajectory of a point of I' is a circular arc in C with
radius greater than ; starting close to q. Therefore the trajectories intersect
I' exactly once, and all parallel translated copies of I' are mutually disjoint. On
the other hand there exist numbers t, # t; with M;, N M;, # 0. Using the
standard argument from the beginning of the proof we have a contradiction to

the maximum principle.
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Figure 4.1: Difference of Maximum Principle between H? and S3

UHM

C

Figure 4.2: Estimate of Angle Between Surface Normal and Geodesic Fibration




Chapter 5

Existence and Uniqueness

In this chapter we prove a new existence theorem (theorem 29) for disk type
minimal surfaces bounded by a given Jordan curve I'. It is the first theorem
which allows the boundary I to lie in part in the interior of H? as well as on the
infinite boundary S of H?. In some sense our theorem generalizes the famous
existence theorem of Jenkins and Serrin for minimal surfaces in R* (see theorem
27 below) who solved the Euclidean minimal surface equation for a boundary
contour consisting of finite and infinite segments. In contrast to the Euclidean
case, the infinite parts of the boundary contour may be much more general in
hyperbolic space. This effect was expected from the existence proofs of Anderson
(see theorems 21 and 22).

We make the a priori assumption on I' that there exists a small open neigh-
bourhood B C S* such that for all p € B C S* I' possesses a 1-1 p-projection
onto a p-convex curve in S along the fibration of H® induced by geodesics
through p. The term p-convex was introduced in definition 11. In the corre-
sponding UH M with p = oo the p-convex curves correspond to Euclidean convex
curves in the complex plane C C S° which need not be strictly convex. In fact,
if I" contains a geodesic arc the projected boundary may be non-strictly convex
in C for all p € B. In our proof we construct a minimizing sequence using a priori
estimates for the gradient derived using mainly geometric terms. The estimates
rely on the results of chapter 4.

There exists a long sequence of different existence theorems for Plateau prob-
lems in minimal surface theory. In the famous work of Douglas [6] and Rado [31]
around 1930 both proved simultaneously the existence of an area minimizing disk
in an arbitrary Euclidean Jordan curve. This was generalized several years later
by Morrey [25] to arbitrary ambient Riemannian manifolds with homogeneously
regular metric, i.e. the ambient manifold does not behave too pathological at in-
finity. In the meantime A.T. Lonseth [23], a student of H. Lewy, proved in 1942
the existence of area minimizing disks in hyperbolic space H3. Lonseth was the
first to put special focus on hyperbolic minimal surfaces. In 1982 Anderson [1],
2] proved existence of a large class of minimal surfaces in H? whose boundary
lies in the asymptotic sphere S of H®.

36



Geometric A Priori Estimates for Hyperbolic Minimal Surfaces 37

Theorem 21 [Anderson 1]. Let I' C S* be an immersed closed Jordan curve.
Then there exists a complete, smoothly embedded minimal disk ¥ in H® with

asymptotic boundary I at S°. ¥ is area minimizing in the category of embedded
disks.

Sketch of the proof: Let I' C S be a smooth curve and p € C(I') a point
in the convex hull of I'. We retract I' smoothly to p via the geodesic flow and let

Iy = {7,(¢) | 74 the unit speed geodesic from p to g € I'}

solve the Plateau problem for the sequence of finite boundaries I';. To prove
convergence of a subsequence it is necessary and sufficient to find bounds c,,C, >

0 such that for all » > Ry the mass (M, |B,) of a minimizing integral p-current
M, with OM; =T} inside balls B, of radius r is bounded by

Cr SM(Mt LBT) S C’r-

¢, and C, are constants depending only on r. These estimates are based on a
monotonicity formula for the volume growth of stationary currents in geodesic
balls and on the behavior of convex sets in H3 in the large.

In fact, Anderson’s results are more general as he allows the ambient manifold
to be H™ and the minimizing varieties to be of any codimension. His proofs are
in the setting of geometric measure theory.

The following theorem Anderson [2] considers minimal graphs in the upper
halfspace model defined over a convex domain €2 C C:

f:QcC—-R
Jioa=r = 0.

Theorem 22 [Anderson 2]. Let I' C S*™ be a convex curve in the upper half
space model such that I' C C. Then there exists a unique minimal graph M
which is complete and absolutely area minimizing with asymptotic boundary T'.

Anderson’s proof uses elliptic theory for the hyperbolic minimal surface equa-
tion 2.1 but he does not mention C! estimates. Using our lemma 19 we obtain
explicit C! estimates. The situation with I' C S®is much easier to handle than
the situation I' C S U H?3 since one can use translated copies of the minimal
surface as barriers. Compare theorem 24 below.

Hardt and Lin [10] and Lin [22] proved the following theorem in H™ which we
state for H3. For the existence part they used Anderson [2].

Theorem 23 [Hardt/Lin 1|. Suppose @ C C is star-shaped with respect to a
point q € 2. Then there exists a unique area minimizing surface M with asymp-
totic boundary 0S). Moreover M is a graph over a halfsphere with center q.
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Lin [22] proved the graph property of the minimal surface M of theorem 23
by using a Steiner type symmetrization. In H? we can see this property more
directly, as well as the uniqueness statement of Anderson’s theorem 22, by using
the maximum principle:

Theorem 24. Let I' C S°° be the boundary of a minimal surface M. If there
exists a hyperbolic translation, such that the corresponding orbits on S™ are
transversal to I', then M is unique and a graph over hyperbolic planes orthogonal
to the axis of translation.

Proof. . In the most general case I' may be star-shaped w.r.t. a point
q € S*°. We choose the axis of a translation 7" to emanate from ¢ and end in
the other component of S not including ¢. Since €2 is star-shaped w.r.t. ¢ all
translations of €2 under 7" will be disjoint. Therefore if a Fuclidean straight line
through ¢ intersects M more than once, we can translate a copy M’ of M such
that M’ N M = (). Then we move M’ back until it first meets M at an interior
point contradicting the maximum principle. This proves that M is the unique
minimal surface bounded by 99 and a graph w.r.t. the fibration of A3 induced
by T'.

Hardt and Lin [10] and Lin [22] proved boundary regularity at infinity for the
area-minimizing surfaces with boundary in infinity obtained by Anderson:

Theorem 25 [Hardt/Lin 2|. Consider H? represented as PM?, KM or UHMS.
For any area-minimizing surface M C H?® with asymptotic boundary I' C C**,
0 < a <1, the set M UT is, near I, a finite union of C** submanifolds with
boundary I' in the Fuclidean metric. They meet S orthogonally at I'.

In Polthier [29] we solved free boundary value problems for minimal sur-
faces in H® by using a conjugate surface construction. Consider a (p,q, r) Cox-
eter orthoscheme with p,q,r € N as they occur in tessellations of H3. These
are specific tetrahedrons whose vertices (P, Py, P, P,) have the property that
span( Py, P;) L span(P;, P,) for i € {2,3} and whose dihedral angles are of the
formZ, & & plliiel We proved existence of a minimal patch with four free bound-
ary curves, each lying on a face of the tetrahedron, for the following class of
Coxeter orthoschemes:

Theorem 26 [Triply Periodic Surfaces|. There exist complete minimal surfaces
in H?® with the symmetry of tessellations given by

e all compact and non-compact platonic solids

e all Coxeter orthoscheme (p,q,r) with q € {3,4,...,1000} and small p and r
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o all selfdual Coxeter orthoscheme with p = q, and additionally all rotational
symmetric Coxeter orthoscheme with all four vertices in or beyond infinity
(their Coxeter graph is 0---0%0 - - -0, they have no (p, q, r) representation).

For the existence proof we used the conjugate surface construction. We proved
existence of a quadrilateral contour in a two parameter family of candidates, such

that the conjugate of the minimal patch in the quadrilateral is bounded by a Cox-
eter orthoscheme. See figure 8.10 for a minimal cell in a hyperbolic 60°-cube.

The following existence theorem of Jenkins and Serrin [12] is powerful for
the construction of simply and doubly periodic minimal surfaces in R? (see e.g.
Karcher [14] and [17]). They considered boundary configurations in Euclidean
space R? which arise in the following way when trying to generalize Scherk’s first
surface: start with a convex planar polygon in the (z,y)-plane and assign to each
edge of the polygon a constant height value. The constant may be a real number
as well as plus or minus infinity. At vertices, vertical lines are used to connect two
adjacent edges of different height. Jenkins and Serrin gave necessary and sufficient
criteria for such Jenkins-Serrin contours to bound an embedded, unique minimal
surface which is a graph except for the vertical boundary segments. The existence
proof heavily uses the first surface of Scherk as a barrier for a minimizing sequence
and good knowledge of the conjugate function to the graph function f(z, y):

Theorem 27 [Jenkins/Serrin|. In the Dirichlet problem stated above we denote
open arcs of the polygon P with finite height as C1,C, .., Cy,, arcs with plus resp.
minus infinity as Ay, .., A resp. By, .., B;. Let a resp. 8 denote the total length
of the segments A; resp. B; and let v denote the perimeter of the polygon. Then,
if the family {C;} is not empty, the Dirichlet problem has a solution if and only
if
2-a<~vyand 2- 03 <.

If {C;} is empty the condition has to be replaced by a« = (3 . The solution is
unique and a graph over the interior of p.

The following definitions will help us talk about the geometric setting of our
main existence theorem in this chapter. We have chosen an intrinsic formulation
since we frequently change among upper halfspace models.

Definition 28. e A p-horosphere is a horosphere in H® with center p.
e A p-geodesic is a hyperbolic geodesic through p.

e A p-coordinate system of H3 is given by the fibration induced by all
p-geodesics and all p-horospheres. This is equivalent to a specific U HM
of H3, where p lies in co. The p-geodesics then become fibres {z} x RT,
z € C, and the p-horospheres become Euclidean planes parallel to C.
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A surface is a p-graph <= every p-geodesic intersects the surface at most
once. Minimal p-graphs fulfill the hyperbolic minimal surface equation 2.1.

The normals of an oriented surface are p-bounded by an angle a < at
every point q on the surface the angle between the surface normal and the
p-geodesic through q is less than «.

p-projection is projection of points along p-geodesics onto S*.

A p-convex set () CS>® was defined in definition 11

We will now state our main existence theorem which proves existence of an
embedded minimal disk bounded by a contour lying in part in the interior of H?
and in part on the asymptotic boundary S°°.

Theorem 29 [Existence Theorem]. Let I' CH> U S* be a Jordan curve and let
B C S be an open set such that Vp € B the curve I' p-projects 1-1 onto the
boundary of a p-convex set in S.

Then there exists an embedded minimal disk M with boundary I'. For all
p € B M is a p-graph.

I was informed by Burago, that Schefel [32] proved a compactness theorem
for saddle surfaces in R?, i.e. surfaces with non-positive Gaul curvature,
which appears to be similar in spirit. But his arguments were not detailed.

Contrary to the Euclidean case we need no balancing condition on the ends
as in the theorem 27 of Jenkins and Serrin.

The requirement of an open set B of projection centers has technical reasons
to ensure the gradient estimates. In contrast to Euclidean space we have
no uniqueness of a minimal graphs with finite or mixed boundary contour
defined over a convex domain in the UH M.

The projection property of I' is not equivalent to the existence of a py € S
such that I" py-projects onto a strictly convex curve in S*°. If I" for example
contains a geodesic arc, this arc will project to a Euclidean straight arc
in C for all p € B, i.e. p-projection(I") will be non-strictly convex for all
pE B.

The results of Hardt and Lin about the asymptotic regularity at infinity
do not apply directly since they assume OM C S* and also M being area-
minimizing.
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Proof. . We construct a sequence of finite minimal disks as Morrey solutions
to finite contours. Using the results of chapters 3 and 4 we obtain a priori C°
and C' estimates, and then use elliptic theory for the minimal surface equation
2.1 to obtain a minimal surface as a limit. For the proof we fix an arbitrary point
po € B and use the po — UH M as a coordinate system. Let §2 be the interior of
po—projection(T’) onto C and the curve I' be given as a function on 0f) :

I':900 — R.
We define a sequence of finite curves {I',} on 02 by

r,:00—R

i <
e {17 0

For n large enough, this results in clipping the infinite part of I' at a horosphere.
The sequence {I',,} converges uniformly to I w.r.t. the Euclidean metric. Since
by the p-convexity assumption on I' the infinite segments of I" have to be strictly
convex arcs in the po— UH M (this is only true for the infinite segments, compare
the remark to the theorem). Therefore the convexity properties of I' carry over
to all ['y.

Let {fn} be a sequence of area minimizing Morrey solutions bounded by the
finite contours {I',} and let Q" CC € be a compact subset in Q. Let frnjo denote
the set of fy lying above € (we have not yet proved that f, is a graph). We apply
lemma 12 (compare the remark following lemma 12) to all minimal surfaces f,
and obtain constants

Ci(,9) :=dist(09,9Q), Cy(T) := \/maxf‘(z)2 +?11diam2§2

2€00

such that for all n graph f, o is uniformly bounded by
0<Ci(29Q) < fg < C(Q,T) < <.

Uniform gradient estimates for f, . W.lLo.g. we assume 0B is a spher-
ical circle. Since all minimal surfaces {f.} have the same projection property,
we can apply theorem 19 and obtain uniform gradient bounds for the sequence
{fnm’} . By the previous established uniform lower C° bound Ci (2, Q,) we can

get a uniform upper bound 7., for the distance r of points on {fn‘ﬂ/} to the
convex hull C(B) of B:

T max = max dist(q,C(B)).
qe’ x{cl Q.9 )}
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Using theorem 19 we obtain a uniform upper bound for the gradient of { fnm’}

above Q':
< sinh 7 =: C(Q, Q, B).

‘gra“d<fn|§2l )

We additionally note the uniform upper bound of the angle o of the normals with
the vertical direction:

a(q) < arctan(sinh rp,,), Vn € N, q € Frer -

We can now apply standard elliptic theory as e.g. we can use theorem 13.3 of
Gilbarg and Trudinger [8] showing that { Il K} satisfies a strictly elliptic equation
with Holder continuous derivatives on compact subsets K CC (). Further using
corollary 6.3 of [8] we get uniform bounds for {|fn‘2,a;K} with @ > 0 on compact

subsets K' cC K.

{fu}, {Df.} and {D?f, } are therefore equicontinuous and uniformly bounded
on a compact subset K " and contain by Arzela/Ascoli a subsequence which con-
verges uniformly in C?(K') to a minimal surface over K.

We now use a standard diagonal argument to prove existence of a limit min-
imal surface over €. Let {K,} be a sequence of compact sets exhausting €2 with
K, C K, for n < m. Starting with the original sequence {f,} of Morrey so-
lutions we obtain a subsequence { fn( 1)} by the above process converging to a
minimal surface M; on K. Iterating this process on all subsets K; and using a
diagonal argument we obtain a sequence of minimal surfaces, we call them { f,,}
again, converging to some f in the C? topology on compact sets. The boundary
behavior on the finite part of I' is controlled by the hyperbolic p—planes through
I', which are barriers for all finite Morrey solutions along 0¢2. Along the infinite
parts of I' we use hyperbolic planes as barriers whose asymptotic boundary is
tangent to I'.



Chapter 6

Comparison of Planar
Hyperbolic Curves

In this chapter we prove a comparison theorem for planar hyperbolic curves. The
result we derive in theorem 37 allows us to estimate the sector angle of a curve
~ enclosed by the two geodesics through «(0) and () orthogonal to . This is a
C'! estimate on 7. We use information of the turning angle of the normal against
a parallel vector field along . If the normal vector along v turns in a certain
way faster than the normal vector of a comparison circle, then the sector angle
U of v will be larger than the corresponding and explicitly known sector angle of
the circle.

In Euclidean space parallel transport is independent of the chosen path.
Therefore the sector angle is identical to the turning angle for every curve. In
hyperbolic space the unknown area of the enclosed sector measures the difference
between both angles by GauB-Bonnet (see Polthier [28]).

For infinitesimal short curves we can use the representation formula of the
sector angle derived in lemma 32 and estimate the integral-term to get control
over the sector angle in terms of the turning angle of the normal vector. For
longer curves the integral-term does not seem to be controllable. An additional
problem for longer curves is that the comparison statement of the curve’s sector
angle with a circle’s sector angle easily becomes false.

We know about no other comparable result for planar hyperbolic curves, ex-
cept of Polthier [28], where we applied the representation formula of lemma 32 to
short curves. In S? Karcher, Pinkall and Sterling [18] used a similar algorithm on
discretized turning angle functions for the comparison of spherical planar curves.
But our arguments are different from theirs.

The motivation for our study of planar curves originates in the application of
the conjugate surface construction method in chapter 8. We will use this method
to prove existence of minimal surfaces with higher genus in hyperbolic space.
The method makes it necessary to have control about a planar hyperbolic curve
~ in terms of the total turning function « of its tangent resp. normal against
a parallel vector field along ~v. We will discuss the application in chapter 8 in
greater detail. Here all arguments are independent of the later application, we
only use intrinsic properties of a curve v about its turning angle function a.

43
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6.1. PROPERTIES OF PLANAR HYPERBOLIC CURVES
Let v:1 =10, — H? C R?i be a planar hyperbolic curve parameterized by arc
length s over the interval [0,1], [ € RT, with tangent vector ¢ and unit normal n.
We denote by (v,¢,n') the derivative of the frame (v,¢,n) in R? w.r.t. the arc
length parameter. Via hyperbolic Frenet theory the curve ~ is well-defined up to
hyperbolic isometries by its curvature function x = k(s) :

(Y (D7)
SRR VALY

Using the technique of Polthier [28], where we transferred a similar method in
S? of Karcher, Pinkall, Sterling [18] to hyperbolic space, we can reduce the order
of differentiability of the determining function. Let a and b be parallel vector
fields obtained by parallel translating ¢(0) and n(0) along . Then there exists a
function a such that we have along ~v:

(6.1)

a=tcosa —nsin «
b =tsin o + ncos .

(6.2)

The function a measures the total turn of the normal n of v against a parallel
vector field generated by parallel translation of n(0). Therefore we define

Definition 30. The function « is called the total turning angle of ~.
The function « also measures the total curvature of v since
a =K.

This can easily be proved by evaluating the right hand side of Kk = <7",n> in
terms of a and b and using the parallelity property.

Using the new frame (7, a,b) we get another system of differential equations,
equivalent to (6.1),

(1) (2, e b (1) 6
5 ) lame 0 0 J\3)

by substituting the expression 6.2.

The new system 6.3 has the advantage that the function « is determined by
the derivatives of v up to order one while we need derivatives up to order two
to determine the curvature function « in system 6.1. This fact is essential when
comparing minimal surfaces.

We derive some formulas for a sector of a hyperbolic circle.
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Lemma 31. Consider a sector of a hyperbolic circle in figure 6.1 with curvature
€ (1,00), radius r, total turning angle «, enclosed sector angle 1) and length [
of the arc. Then we have the following equations:

kK =G
a T
Qo ——Ltanhr—l m—z/z-coshrz%nkl (6.4)

area =1 - (coshr — 1)
P =1-VEE— ] =

sinhr*

Proof. . iselementary (use sinhr = 7};,—_1 and coshr = ;«;—1) .

Lemma 32. Let v be a planar hyperbolic curve in R} parameterized by arc
length s with tangent vector t, normaln and total turning angle o with a(0) = 0.
Then the following integral representation exists at length [ :

(t(1),1(0)) = cosa(l) +/OZCOS(04(Z) —a(s)) (v(s),£(0)) ds (6.5)
(n(1),t(0)) = —sina(l) — /Ol sin(a(l) — a(s)) (y(s), t(0)) ds. (6.6)

Proof. . We use the equations 6.2 for the first equality and the system of
differential equations 6.3 for the last equality:

(n(1),t(0)) = (—sina(l)-a(l)+ cosa(l)-b(l),t(0))
—sin a(l) + (—sin a(l) - (a(l) — a(0)) + cos a(l) - (b(1) —

) + <—81na(l)- 0 d/(s)ds + cosa(l) - [y (s)ds,t(0))
) — Josin(a(l) — a(s)) ((s),t(0)) ds.

The proof for equation 6.5 is similar.

= —sina(l

—sin ol

6.2. COMPARISON OF PLANAR HYPERBOLIC CURVES

Let a.(s) = s - k be the turning angle of a circle 7, with constant curvature
k and let a(s) be the turning angle of a planar hyperbolic curve ~. s is arc
length parameter defined on the interval [0,{]. In this section we give comparison
conditions on « and «, such that we can estimate the angle v enclosed by the
two geodesics 1, 62 through «v(0) resp. v(s) with tangent directions n(0) resp.
n(s) as in figure 6.2. Since the tangent vector ¢(s) of 7 is for each s normal to
the geodesic through +(s) with initial direction n(s) we have

(t(s),t(0)) = cost(s) (6.7)

in R} and with lemma 32 the representation

cos(s) =cosa(s) + /Os cos(a(s) — a(t)) (y(t),t(0))dt. (6.8)
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Definition 33. The angle v(s) is called the sector angle of 7).

In the following we assume

7(0) = 7x(0)
t(0) = t.(0)
n(0) = nx(0)
and
0<an(s)=s k< a(s) < apax <7 (6.9)

along the interval [0,1] with oa := maxger a(s). These inequalities arise from
estimating the turning angle of the normal along straight arcs of a minimal surface
with a helicoidal comparison surface. The curves v and ~, are well defined by
their turning angle functions « and «, via equation 6.3. To compare both curves
we approximate them by polygons with a small step length h. h is the same for
both curves and all steps. The turning angle function of the polygons are step
functions over the discrete interval [0,]. They are close to the original functions
a and a for small h.  We denote the discretized functions also with their original
identifiers and then work only with the discretized versions. N is the number of
subintervals for a given step length h.

Using the following algorithm we obtain a one parameter family of polygonal
curves 7; which continuously deform ~ into ~.

Algorithm:
1. Start with ap:=a,, 7 :=0

2. Lift the step of ; over the subinterval N — j to the level of . Then we
have
aon [sy_j_1,5n]

=1 Qo0 [Sg, SN—j—1)

and the corresponding polygonal curve 7; equals 7, on [sg, Sy—j-1) -

3. Set ajy := oy, increment j and continue with 2.

With this algorithm we deform «,, step by step into «, starting at the end
of the interval [0,[]. Since all o; determine via the system 6.3 a curve y; and
since the system depends continuously on the angle function, the curves ~; and
the functions ¢; and n; deform also continuously. We now derive a sequence of
lemmas to control the corresponding sector angles.

To study the effect of step 2 of the algorithm on the corresponding polygon v;
consider the situation at ;(sny—j—1) and y;(sn—;) in figure 6.4 where i := N—j—1.
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The effect of step 2 at 7;(s;) is a rotation H of ;s sy With center ;(s;)
and angle 6; being the difference of the levels of @ minus «, over the subinterval
(8i,8i+1). The effect at ;(s;11) is arotation G around ~;(s;4;) with angle -6;.

So the total effect of step 2 is the identity map on ;|0 s,), @ Totation of (s, s\ 1]
around 7;(si) with angle ¢; and on ~;s,,, sy] the product of the two rotations
H oG. By lemma 4 this results in a translation T" of 7jjs,,, 5] along a geodesic
through ”yj(éd'—;"i“-), which encloses with the mid perpendicular of the segment

from 7(s;) to Y(s;41) an angle 6 := % + ¢;. Using equation 1.5 we have

~ b it1 — Si 0;
0= 3 + € = arctan(cosh% . tan;),

which is approximately -%- for small step size h. We consider 6 and later gm-t as
step functions on I, therefore we skip their subindex i.

Lemma 34. Let avyay € [0, 7] and « and «, fulfilling the condition
0<ags)=s-k<a(s) <amn <7, s€l:=]0,l]

as in equation 6.9, then each translation direction occurring in step 2 of the
algorithm described above intersects the geodesic & through ~(0) with initial
direction n(0).

Proof. . The the sector and therefore the interval I = [0,!] have maximal
length [ = wtanhr. This follows from the assumption on oy, and equation 6.4.
Fix j in the algorithm above and set ¢ :== N — 57 — 1. Since 7, is a circular
arc with center M on 6 and the axis of translation 7' encloses an angle § > 0

with the geodesic connecting M with ~, (i‘ﬂgﬁ‘> , the translation direction can

intersect ¢ at most in a point between M and 6(o0).

Let 6.4 denote the critical value for which 7" would intersect 6 in 6(oc0) (com-
pare figures 6.4 and 6.5). We show the inequality ém-t >0 to prove the lemma.

From the geometry of the circle we know that 6,,;; is strictly decreasing from
T as ¢ resp. s grows. We estimate 0, from below by the angle Q of the trian-
gle A, (M, 7,(0), , (=ia ) lying inside the triangle A, (M, 8(00), 7, (St ))
(compare figure 6.5). The two sides of Ax having the vertex M in common are
of equal length r. Estimating the area of A, by the area of the circular sector 7,

given by equation 6.4 we obtain a lower bound for €2:

0 (7 — 1 —area(A,))

%(W — 1 — area(sector v,))
<(m— 1 —1p(coshr — 1))
B

— ’—g cosh r

v

For a given curvature x there exists a positive lower bound ¢ such that

Oerit — L >€ >0, forallse .
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This follows immediately from the trigonometry of figure 6.5 since v, is always
less than a half circle by the assumption. The uniform bound €’ is independent
of the discretization, it depends only on the curvature x.

We choose the stepsize h of the discretization small enough such that we have

e; <€ foralie[0,N—1],
where ¢, = 0 — %‘ is defined above.

We are now in a position to estimate 0., > 0 at an arbitrary node of the step
function ~,:

~ 0.
ecrit -0 = ecrit _-2- — €
Q+é—&—¢

v
)
|

N R
E{o

VIV IV
@)
I
k
+
|§
—ho
=

The first inequality uses the lower bound for gc,,it and the upper bound on ¢;
derived above. In the second inequality we use the upper bound 7 for o from the
assumption, and substitute a,(s;) in the third inequality by its explicit formula
from equation 6.4. The final inequality uses the estimate on (2.

The following lemmas will be used when studying the effect of a translation
occurring in the lift of a,, to .

Lemma 35. Let 6 be a geodesic through the point O together with the family
of all perpendicular geodesics to 6. Further, let T' be an axis of translation from
A to C through O together with the family of all orbits of T'. Let o1 and o2 be
two orbits of T, 6+ be the geodesic perpendicular to § in O intersecting o, and
0y in B and D as in figure 6.6.

Then the angle between the orbit o and the perpendicular geodesics to 6

1.) monotonically decreases from A to B

2.) monotonically increases from B to C

and the angles between the orbit o2 and the perpendicular geodesics to 6

3.) monotonically decreases from A to D

4.) monotonically increases from D to C.

Proof. . The problem is symmetric w.r.t. o1 and o2 and we restrict to
proving the assumption for o;.

a) The shown angle between T and the perpendicular geodesics is decreas-
ing from O to A and from O to C. This follows immediately from hyperbolic
trigonometry applyed to triangles enclosed by 6, T" and the é-perpendiculars.
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b) If we parallel translate the geodesic segment OB along T to the segment
T(OB) with new end points T(O) and T(B) then the angles at T(O) and T(B)
will remain constant.

c) From a) and b) it follows that the é-perpendicular through 7'(O) crosses
the triangle (A, T(O),T(B)). Therefore the é-perpendicular through 7' (B) crosses
the quadrilateral (T'(B),T(0),O, B), and its shown angle at 7'(B) with the orbit
curve is bigger than the angle at B.

d) Since the angle in a) is monotonicly decreasing from O to A we could
use any other é-perpendicular as initial geodesic segment for the comparison
argument in b) and c).

This proves 1.

To prove 2. we use a corresponding argument as in b) and ¢) with translation
along T in direction of C.

Lemma 36. Let 6 be a geodesic with its family of distant curves. Let T be a
geodesic insecting 6. Then every distance curve o of T intersects each distance
curve of § exactly once (compare figure 6.7).

Proof. . The distance curves to 7" resp. ¢ are the orbits of a hyperbolic
translation along T resp. 6. They are segments of hyperbolic circles with constant
curvature k € [0, 1) through 7(—oo) and T'(+00) resp. 6(—o0) and 6(+0o0). Let
o be an orbit of T. Then every orbit of 6 intersects o at least once since o sepa-
rates 6 (—oo) and 6 (+00). Suppose o intersects an orbit of 6 more than once. This
means it intersects exactly twice since both orbits have constant curvature. Then
both ends of the orbit of ¢ lie on one side of ¢ contrary to the above separating
property of o.

We are now in a position to prove the main comparison theorem for a planar
hyperbolic curve . This is a C'! estimate comparing the tangent vectors at v(0)
and () with each other using knowledge only about the total turning function
a of the tangent resp. normal vector along . Despite the technical restrictions
we have to make on the situation it turns out that more general conditions easily
make the statements false. This contrasts very much to the Euclidean case, where
the sector angle of a curve is identical to the turning angle. Compare also the
helicoidal comparison theorem in R? of Karcher [16].

Theorem 37 [Comparison of Planar Curves]. Let « be a planar hyperbolic curve
and 7y, a sector of a hyperbolic circle with constant curvature k € (1,00), both
defined over an interval [0,1] and parametrized by arc length s. Further, let «
resp. a,, be the turning angle functions of 7y resp. v, fulfilling the condition

Vs e€[0,l]: 0< an(s) =s-k<a(s) <a(l) <m,
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and the sector angle 1),. of the circle satisfies

I
> -
ez =

Then the sector angle i of v is larger than the sector angle 1, of the circle,

i.e. we have: .
wzwm:l V/€2_1ZE-

For a given curvature «, the inequalities a,(l) < m and 9, > % are equivalent
to restrictions on the length [ of the curves:

T T
—_ <<t
2WKk:E—1— T K

and they are also equivalent to restrictions on a:

TR

Proof. . We will apply our lifting algorithm to deform v, to v and prove
that the corresponding sector angles monotonically increase during each step. In
the following we denote with G(p,q), p € H*> and q € T,H?, a geodesic through
p with initial direction q.

We assume that a and «, are given as step functions on a discretization
0=s9p < 81 < ... < sy = | with a suitable small step length. Using our lifting
algorithm we construct a family of step functions

{oy }je{O,.. N1}

deforming v, into 7. Let ¢ = N — j — 1 and consider the effect of the lift a; to
a1 on the change v; to 1,41 of the corresponding sector angles. As discussed
before the total effect of the lift is

e the identity on ;jo,s,]
e a rotation on v, s, around v;(s;) with angle 0; = a(s;) — a.(s;)

e a translation on |, sy along an axis T;.

Therefore the change v; to v;;, is the effect of the translation T'. Be-
cause of lemma 34 T intersects the geodesic 6 = G(v;(0),n;(0)). The geodesic
G(~;(1),—n;(1)) is parallel translated by T to the geodesic G(7;41(1), —n;+1(1)).
Since T intersects ¢ we can apply lemma 35 to prove that the angle of G(v;(1), —n;(l))
and the geodesic 6+ (; (1) through 7;() and perpendicular to § is increasing under
the translation 7'
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If T intersects 6 in direction of 6(co) then 7;(I) is on an orbit of T' be-
tween points A and D, compare figure 6.6. During translation the angle of
G (v; (1), —n;(1)) with the orbit of ; (1) is constant and therefore we can use lemma
35 to see that the angle ¢ of G(v;(l), —n;(l)) with the 6—perpendicular, as indi-
cated in figure 6.6, is increasing,

If T intersects ¢ in direction of §(—o00) then v;({) is on an orbit of 7" between
points B and C, because of the assumption in the theorem ¢, > % and further
translations increase the angle. Since the angle of G(~;(1), —n;(1)) with the orbit
of v;(1) is constant we use lemma 35 in the same way as above to prove that the
indicated angle of G(v;(1), —n;(1)) with the 6 —perpendicular is increasing.

Therefore, during the lift from a; to a we increase in each single step the
angle of G(v;(1), —n;(l)) with the §—perpendiculars. Since G(v;(0),n;(0)) = 6
the sequence of sector angles {1,} between 6 and G (v; (1), —n;(1)) is monotonically
increasing from v to 1.

This proves the theorem.
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Figure 6.1: Sector of a Circle

Figure 6.2: Notation for a Planar Curve
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Yy c H*

s arclength

Figure 6.3: Turning Angle as Step Function

0(0o)

Figure 6.4: The Effect of a Single Step of the Deformation Algorithm
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.............

Figure 6.5: Estimate of the Critical Angle
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Figure 6.6: Angles along Translation
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Figure 6.8: Change of Sector Angle




Chapter 7

Direct Examples

This section is intended to be an application of chapter 5. We discuss a number of
new complete embedded examples of periodic minimal surfaces in H3. We prove
existence of a fundamental piece by using theorem 29 of chapter 5. The term
"direct” in the title indicates that we explicitly supply boundary contours. In
our examples the finite part consists in each case of a number of polygonal arcs,
i.e. segments of hyperbolic geodesics. All fundamental pieces discussed below
extend by successive 180°—reflection around finite polygonal arcs to complete
embedded minimal surfaces in H*. In contrast to the Euclidean case we have
much more freedom in choosing the part of the contour lying on S*°. As long as
the projection property for theorem 29 is fulfilled, we may vary the infinite part.
Compare this to the theorem of Jenkins and Serrin 27 where it is proved that the
infinite part is asymptotic to a Euclidean plane.

Some of our examples have contours similar to those of classical minimal
surfaces in Euclidean space. We call these surfaces ”"hyperbolic cousins”. This
term was introduced by R. Bryant in his study of hyperbolic H = 1 surfaces
which are isometric to Euclidean minimal surfaces.

The first example is discussed in greater detail to illustrate the application of
theorem 29. In the discussions we usually do not always mention the possibility
of modifying the infinite part of the boundary. For a clearer presentation we have
chosen this part to be asymptotic to a hyperbolic plane usually.

7.1. HyPERBOLIC FIRST SCHERK COUSINS

This example is similar to the Euclidean 1. Scherk surface and its generaliza-
tions. The building block for the translational symmetry group of the Euclidean
1. Scherk surface is a Jenkins/Serrin graph over a black field of a chess board
with values +00 along the horizontal and -oo along the vertical sides of the field
(compare theorem 27). Two further straight lines on the building block crossing
at the saddle point (the two diagonals of the field) divide it into four congruent
pieces. The complete surface is obtained by successively reflecting the block at
its vertical straight lines over the vertices of all black fields. This surface is then
a graph over all black fields of the chess board.

In hyperbolic space we can simulate this procedure. To setup the correspond-

o6
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ing Jenkins/Serrin problem, we look for a tessellation of H* by regular hyperbolic
quadrilaterals and a dual regular n-gon such that inversion at the vertices of the
quadrilaterals maps each quadrilateral exactly into another quadrilateral, i.e. the
inversion induces an isometry of the tessellation. Additionally we need that edges
with initial values 400 resp. -oo are mapped to edges with +oo resp. -0o. Con-
sider the tessellation of figure 7.1.

M

M?

The two fundamental triangles are drawn in a separate figure. The condition
p,r = 0(mod 2)

is necessary and sufficient for the existence of a tessellation of H? with regular
p-gons and r-gons such that edges with +o0o resp. -oo always correspond to edges
with 400 resp. -co. In this cases g € R is determined by the choice of p and r by

T cos®=
tan—:—f.
g cos®&

™

r = oo denotes the case when % degenerates to 0. In this case all vertices of the
dual polygon lie on a horocircle with center M’e 5.

For a given p we can now increase q further but the dual polygon will no longer
close since M’ is beyond S*°. From now on the complete minimal surface will
be simply connected. The flexibility of this situation stays in marked contrast to
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minimal surfaces in Euclidean space. It gives a feel for the huge amount of space
available in hyperbolic space.

We can increase ¢ further to oco. In this limit case the whole tessellation
consists of exactly one ideal quadrilateral with anon periodic embedded complete
minimal surface inside.

To prove that the tessellation is correct everywhere, i.e. no gaps or overlaps
occur, it is sufficient to check this around the two neighboring fundamental poly-
gons. Then the global correctness follows in a similar way by a Poincaré argument
as in the case of tessellating H? with congruent triangles.

Now we prove existence of a fundamental minimal patch for a fundamental
triangle of an arbitrary tessellation as discussed above. Consider the hyperbolic
Jenkins/Serrin contour for the First Scherk Cousin in figure 7.2.

We choose the projection center py € S* to lie somewhere above the shaded
region close to vertex M. The infinite part of the contour may for example
be asymptotic to the hyperbolic plane being orthogonal to the triangle along
the geodesic through V; and V;. But it may be different from that as long as
still a projection center py with the required property exists. Then the contour
p-projects onto a p-convex curve on S for all p € B, B C S a small neigh-
bourhood of py. In figures 7.3 and 7.4 we show a piece of a First Scherk Cousin
with p =4 and r = 6 and the complete surface.

In figure 7.6 we show a non-periodic First Scherk Cousin. This surface is the
limit case, when in the points V; and V5 in the Jenkins/Serrin contour become
ideal points on S, i.e. ¢ = .

7.2. VARIATION OF THE FIRST SCHERK COUSIN

A variation of the hyperbolic Scherk surface works only partially. Consider the
Jenkins /Serrin graph in figure 7.5 consisting of two isometric fundamental pieces.
When reflecting the minimal surface around the vertex V; we obtain ¢ oco—half
planes and ¢ (-oo)-half planes intersecting at the vertical geodesic at V. There-
fore the surface would not be embedded. If we choose ¢ = 0o, V; becomes an ideal
point and the half planes no longer intersect. The problem is still well-defined
and we obtain a complete minimal surface which can be described as follows:
Take a hyperbolic plane and tessellate it with regular ideal p-gons. Along the
edges of all p-gons intersect the plane orthogonally with vertical planes. Replace
the singular intersection lines by two holes.

7.3. HYPERBOLIC SECOND SCHERK COUSIN

The hyperbolic pendent of the second Scherk surface, the simply periodic Scherk
tower, can be directly constructed or constructed via the conjugate surface method
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(compare chapter 8). For the direct construction we choose a hyperbolic Jenk-
ins/Serrin contour with two ends similar to that in figure 7.8. The only difference
is, that two boundary geodesics joining the same end must belong to the same
hyperbolic plane, i.e. both geodesic pairs are not twisted against each other.

The projection center py lies on S between the two planes spanned by the
two pairs of boundary geodesics to assure the required projection property of
theorem 29. The angle at the two finite vertices is & &k € N, and k determines
the order of the saddle point. Compare figure 7.7 for a picture of the complete
surface. As in the Euclidean case the saddle tower looks, from a distance, as k
planes intersecting in a single line. Moving closer, this line is replaced by a system
of alternating holes. A further parameter of the construction is the hyperbolic
distance of the two finite vertices in the initial contour. As in the Euclidean case
one may cut the infinite parts of the contour at finite distance along hyperbolic
geodesics and obtain a family of triply periodic surfaces. But this construction
needs further restrictions, since the new geodesics have to intersect the original
boundary at natural angles, i.e. angles of the form %,/ € N.

7.4. HYPERBOLIC HELICOIDAL SADDLE TOWERS
Helicoidal hyperbolic saddle towers corresponding to Karcher’s construction in R?
[14] may be obtained by rotating the two geodesic boundary arcs at M around
the geodesic from M to M’ by an arbitrary angle in figure 7.8. The geodesic
boundary arcs intersect the geodesic from M to M’ orthogonally. The complete
embedded helicoidal saddle tower is shown in figure 7.9.



60

Konrad Polthier

Figure 7.1: Tesselation of H? by Regular Quadrilaterals

Figure 7.2: Contour for Hyperbolic First Scherk Cousin

Figure 7.3: Fundamental Piece of First Scherk Cousin with Tessellation
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Figure 7.4: Complete First Scherk Cousin (p=4, r=6)

Figure 7.5: Variation of Scherk’s First Surface

61



62

Konrad Polthier

Figure 7.6: Non Periodic Example of the First Scherk Cousin

Figure 7.7: Second Scherk Cousin (k=2)
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Figure 7.8: Fundamental Contour for Hyperbolic Helicoidal Saddle Tower

Figure 7.9: Hyperbolic Helicoidal Saddle Tower
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Chapter 8

Examples via Conjugate Surface
Construction

8.1. THE CONJUGATE SURFACE CONSTRUCTION

The conjugate surface construction method is a powerful tool for proving ex-
istence of minimal surfaces whose finite boundary parts consist of planar lines
of symmetry. In general, these surfaces are instable such that minimization ar-
guments are often not available. Lawson [19] used this method first to prove
existence of Euclidean H = 1 surfaces via a conjugate surface construction in S3.
In [34] Smyth used this construction to prove existence of three minimal patches
in each Euclidean tetrahedron. Karcher, Pinkall, Sterling [18] resp. Polthier [29]
applied the conjugate surface method to minimal surfaces in S® resp. H3. Com-
pare also Karcher’s work in [15] and [16] who refined the arguments controlling
the method in R? and used it in many existence proofs.

We now give a short introduction into this method. Assume a free boundary
value problem for a minimal surface, i.e. parts of the boundary are restricted to
planes and the surface shall intersect this planes orthogonally. Instead of solving
this problem directly we can try to construct the conjugate minimal surface.
By the results of section 2.2 this is an equivalent formulation of the problem.
In the case mentioned above the conjugate contour would consist of polygonal
boundary arcs. The angles of the polygon are known from the free boundary
value problem, since both surfaces would be isometric. In some cases in R3 this
is enough information to determine the conjugate contour exactly. Solving the
Plateau problem for the polygonal contour and conjugating the surface would
lead to a solution of the initial problem.

The biggest problem is usually, that the conjugate polygonal contour is not
uniquely determined. Therefore, being able to estimate the planar arc corre-
sponding to a straight arc is a necessary condition to apply the conjugate surface
construction.

We derive such estimates in our following theorem 38 based on the results of
chapter 6. In the following, this theorem will be our working horse to control the
hyperbolic conjugate surface construction. We use the theorem to show that the
two normal geodesics at the end points of a planar arc are orthogonal, i.e. 1 = Z.

64
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Consider astandard situation in the conjugate surface construction as in figure
8.1

Theorem 38 [Comparison with Helicoid]. Assume a situation in the conjugate
surface construction ag in figure 8.1. A minimal surface M contains a straight
arc «y of length | < %Eﬂ'-and has a helicoid as a barrier surface from below with
axis vy, i.e. the two turning angle functions o and o satisfy

a,(0) =a(0)=0
a.(s) <as) <a(l) <, sel0,l]

\/%2 + 12 < a(l) = a(l).

If further there exists a one parameter deformation M, t € [0,1] of M =: Moy
such that the corresponding functions oy and l; vary continuously and

and

ai(ly) <

==

then there exists a surface My, tq € [0,1], such that the sector angle 1, of the
conjugate surface M; fulfills

s
¢t0 - Z

1.) The condition [ < ﬁ% is no additional restriction, it only assures that
\/“72 +12 < o) <7 can be fulfilled. In standard applications of this lemma it is

often possible to choose a(l) = 7. Choosing [ < 3225;; in such cases will generally
satisfy all necessary conditions of the lemma.
2.) The continuous dependence of a; on ¢ will be shown in each application
separately by using different barrier surfaces adapted to the specific situation.
3.) Instead of 1)y, = % the proof shows that every angle less or equal < may
occur.

Proof. . We will apply theorem 37 to prove that the sector angle g of
My = M is larger than £. The assumed inequalities for a(s) are the required
condition on « for the theorem. From lemma 31 we have
. (1)

KR =

and
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Using the inequality ,/%4— 12 < afl) = . (l) we can estimate 1, :

|7 T
> |m—— 2= > -
Yr 2 4 + -2

Therefore we can apply theorem 37 and deduce that

T
o > 5
for the sector angle 1y of the conjugate arc 7.

For M; we have a;(l;) < Zand i < a1(ly). By the assumption oy, [; vary
continuously w.r.t. t. The same is true for the sector angle ); since the system
of differential equations 6.3 depends continuously on «; and ;. Therefore the
intermediate value theorem on v, proves existence of a value t, € (0,1) such that

7#to =

= B

8.2. AcAIN, HYPERBOLIC SECOND SCHERK COUSIN

We start these examples with the hyperbolic version of the Euclidean Scherk
tower, also known as Scherk’s second surface. The most symmetric version was
already discussed in chapter 7 when we used the fact that this surface is divided
into simply connected pieces by the straight lines lying on it. We prove existence
of this surface again via the conjugate surface construction, demonstrate the
application of our helicoidal comparison theorem 38 for the first time and thereby
obtain also deformations of the symmetric Scherk surface which contain no longer
straight lines, i.e. they do not appear as Morrey solutions of a direct construction.

Consider the contour in figure 8.2 and assume for the moment [ =1’ i.e. a
symmetric contour. We can solve the corresponding Plateau problem using our
existence theorem 29. Let M be the minimal surface in this contour. We use
our helicoidal comparison theorem to prove existence of a value ag € [32-, 7r) such
that the conjugate arcs of AB and DB have sector angles Z.

We choose a helicoid as a barrier with axis A and B, and having the same
tangent planes in A and B as M. For a given length [ of the arc AB with

I < é@ we choose «(l) € [1/”72 —|—l2,7r> . Now all conditions of theorem 38 are

fulfilled, it remains to prove continuous dependence of the turning angle function
on variations of the contour: if we fix [ and reduce «(l) by € we obtain a minimal
surface M. M is a barrier to M along the arc AB from the outside. To get a
barrier from the inside we translate M along AB in direction of A so far that the
barrier helicoid of M along AB separates the arc AC from the translate of M.
Then we know that the translate of M is a barrier from inside since it leaves the
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contour of M on one side. The shift of M is of the same order as ¢ and M has
to lie between M and its translated copy. Therefore we have

Vs € [0,1]: a(s) — a(s) <e).

The same arguments work simultaneously along the arc DB. This proves exis-
tence of the hyperbolic Scherk tower via conjugate surface construction.

8.3. NON-SYMMETRIC SCHERK TOWER
The arguments for the symmetric tower for both arcs AB and DB are indepen-
dent of each other. For given [ and [ with I . [ we can argue on both arcs as
above and obtain by an intermediate value argument that there exists a surface
such that the two sector angles ¢ and 12 on the conjugate arcs are rectangular.
Since I # I’ the surface M has lost its reflectional symmetry. On the conjugate
surface M* we therefore have no longer straight lines.

8.4. FIRST SCHERK COUSIN WITH HANDLE

This modification of the first Scherk surface was first done by Karcher [14] in

Euclidean space. The saddle of a fundamental piece is replaced by a handle. The

complete surface has the same translational symmetry group as the original 1.
Scherk surface.

To prove existence in hyperbolic space we have a closer look at the conjugate

contour in figure 8.3. The sector angle along the edge [; has to be made Z.

2
Therefore, depending on the length I;, we choose the total turning angle «(l,)

of the normal along AB to lie in the interval [\/"‘%—1— l%,w) to apply lemma 38.

The same barrier arguments as for the singly periodic Scherk tower ensure the
continuous dependence of the change of the normal along AB w.r.t. variations
of a(ly).

This proves the existence of a hyperbolic Scherk handle above an equiangular
quadrilateral. Further estimates on the curves [ and [5 would be necessary to
assure existence of a surface of this type also above an equiangular quadrilateral
with all sides of equal length (see figures 8.4 and 8.5).

8.5. HYPERBOLIC k—NOID COUSINS

The hyperbolic k-noids are surfaces with a multiple number of horizontal catenoidal
ends as their Euclidean pendants of Jorge and Meeks [13]. For k =2 we have a
rotational symmetric hyperbolic catenoid with two ends. This surface comes with
an explicit parameterization since the differential equation for the meridian can
be integrated [4]. The catenoid comes in a one-parameter family of surfaces where
the curvature x of the circular waist varies in (0,00). For k£ < 1 the catenoids are
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simply connected and do no longer have an axis of rotation. We will recognize
the same behavior on the k—noids too.

Consider the conjugate contour for a hyperbolic k—noid in figure 8.6. The
sector angle 8* has to be rectangular. For this we must control the turning angle
« along the arc AB on the conjugate contour. As in the construction of the
second Scherk cousin we use a helicoid with axis AB and tangent to the contour
in A and B to have a circular comparison curve for theorem 38. For a given

V= + 2 7r> to fulfill all estimates of the lemma.

The continuity arguments are similar to the argumentation of the second Scherk
surface, but depend here on the choice of the part of the boundary lying on S*°
during rotation of a(l). For the second Scherk surface the asymptotic boundary
was always part of the limit of the same hyperbolic plane. The arguments here
depend also on the fact whether the plane orthogonal to AB in A intersects the
line BD. This is the case for small [, while for larger [ and small ¢ they do
not intersect. Let us assume they do not intersect. We choose as an asymptotic
boundary from C' to D a segment of a circle on S* such that for larger a(l) the
same construction gives a curve on S lying in the halfspace which is bounded by
the plane AC'D and which contains B. Also changing a(l) by € the asymptotic
circular arcs shall change only {(¢) w.r.t. the Euclidean metric. Then we can
argue as for the second Scherk surface: When reducing (), the original surface
is a barrier for the turning angle o along A to B from above. For an estimate
from below we translate the original surface in the direction of A a small amount
until it leaves the edge AC on one side. This is assured by using a helicoidal
barrier as in the barrier construction for the second Scherk surface. Therefore we
can apply theorem 38 to prove existence of a sector angle 8* = %. The argument
was independent of £ and we obtain the whole family of hyperbolic £—noids.

length [ we choose «o(l) €

If the plane orthogonal to AB in A intersects the line BD we choose the
asymptotic circular arcs in such a way that for larger a(() they lie in the halfspace
which does not contain B and reverse the roles of the barrier surfaces in the
arguments.

Compare figure 8.7 for hyperbolic trinoids. The size of the ends was modified
in the family.

Similar to the situation of the hyperbolic catenoids with waist curvature x <
1, we can make the sector angle 3* of the k-noid vanish. Even more, we can
produce a situation such that the two normal geodesics at A* and B* have positive
distance. This can be controlled by making the total turning angle 5 = «(l) of
the conjugate contour small enough, [ large enough. This again contrasts very
much to the situation in Euclidean space.
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8.6. PrAaTonoiDs: FrRoOM TrIPLY PERIODIC TO NON PERIODIC

In Polthier [29] T proved existence of minimal surfaces in all regular hyperbolic
polyhedra and in a large class of Coxeter orthoschemes (compare theorem 26).
The fundamental cells of some of these minimal surfaces sit in the same way in
polyhedra as the Euclidean Schwarz surface in a cube with handles to all faces
(compare figure 8.8). Existence of these surfaces was proved using a conjugate
surface construction and solving a two parameter problem. The possible conju-
gate quadrilateral contours come in a two parameter family.

Now we try to increase the almost circular curves of all polyhedral faces and
move to infinity to produce catenoidal ends. The resulting surface will look similar
to the k-noids of Jorge and Meeks [13] with additional catenoidal ends. For the
existence proof of the platonoids consider figure 8.9. The conjugate contour is
similar to the conjugate contour of the k-noids. The difference is, that the relevant
sector angle * on the surface has to be £ for k-noids. For (p,q)—platonoids it
must be a specific value 37=037(p,q) <% depending on p and ¢. The exact value
of B is not of interest here. It may be computed for the pyramid with peak
M and three dihedral angles f;" f]- and % by intersecting the pyramid with a unit
sphere with center M. Then one can easily compute 3 by spherical trigonometry.

To control 3* we use theorem 38 and choose as in the case of the k-noids a
contour such that $* > % and another contour with 3 < 3 such that g* < f.
The continuity arguments are the same as those for k-noids. This proves exis-
tence of a fundamental piece for a platonoid with the symmetry of each of the
five platonic solids.

We can now extend the idea of moving circular arcs to infinity to other triply
periodic candidates. The above platonoids originated in surfaces with a Schwarz
handle through each face of the platonic solid. For the Euclidean cube, E.R.
Neovius proved existence of a triply periodic surface whose cell has handles to
all edges of the cube. We proved in Polthier [29] that such surfaces also exist
in some hyperbolic platonic solids. A. Schoen constructed another cell in a cube
with handles to all eight vertices, the I —W P surface. The I — W P idea does not
lead to new minimal surfaces in hyperbolic space: when the handles are extended
to infinity we obtain only a surface which is identical to a Schwarz type platonoid
in the dual polyhedron. For example, extending the handles of the I — W P type
surface in a hyperbolic cube to infinity leads to the same surface when extending
the Schwarz type handles of a cell in a hyperbolic octahedron to infinity.

We do not discuss the Platonoids of Neovius type here, because the arguments
depend on odd angles of the Coxeter orthoscheme. The choice of the projection
center, the asymptotic curve, the length of the side AB and the continuity argu-
ments would all need special considerations.
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8.7. CATENOID WITH HANDLES

In Euclidean space Hoffman and Karcher constructed what they called a fence of
catenoids. A building block for this translational symmetric surface is topologi-
cally a catenoid with two horizontal handles, emanating at opposite points of the
waist. By successive reflection at the vertical symmetry planes of the handles the
complete fence of catenoids is generated. By increasing the number of handles
around a waist one can increase the symmetry.

We now consider such surfaces in hyperbolic space. The conjugate contour of
these candidates is similar to the contour of the hyperbolic first Scherk surface,
i.e. in some limiting case the catenoids with handle correspond to Scherk towers.
Consider figure 8.12 for the notation. For a complete imbedded minimal surface
with 35, ¢ and B of the form € with an integer & we must consider a three
parameter problem. This is currently not possible. We can construct a surface
with 37 = B35 = Z: this is the Scherk tower discussed before. Let us discuss a
solution with 37 = % and ¢ =%, 3, will be arbitrary. This would give a catenoid
with &k horizontal handles along its waist, but the complete surface will generally
not be embedded since 35 will be arbitrary.

Choose {; and I, small such that the situation exhibits Euclidean behavior.
We use lemma 32 to estimate the sector angles. Let e stand for arbitrarily small
numbers. Then for fixed ay(l;) we can always choose a;(l;)=% + € to obtain
pi = %. Choosing ay(ly)=¢, we obtain ¢ = % — € and for ay(ly)=% we get
¢ = €. Therefore we have existence of pairs 51 = 5, ¢ = ¥ for each k;2 by the
intermediate value argument applied to ¢,. The continuity of ay comes from the
ability to rotate the contours around [2 in both directions, leaving the surface
between both rotated copies.

In figure 8.13 we show a picture of a hyperbolic catenoid with handles.
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Figure 8.1: Standard Comparison with Helicoid

Figure 8.2: Conjugate Contour of Second Scherk Cousin
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Figure 8.3: Conjugate Contour of First Scherk Cousin with Handle

Figure 8.4: Fundamental Piece of the Hyperbolic Scherk Surface with Handle
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Figure 8.5: Hyperbolic Scherk Surface with Handle
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Figure 8.6: Conjugate Contour for Hyperbolic k-noids
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Figure 8.7: Hyperbolic Trinoids with Different Ends
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Figure 8.8 Hyperbolic Minimal Surface in a 60°—Cube

Figure 8.9: Conjugate Contour of Hyperbolic Platonoids
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Figure 8.10: Hyperbolic Platonoid with Cubical Symmetry

Figure 8.11: Hyperbolic Platonoid with Dodecahedral Symmetry
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Figure 8.12: Contour for Hyperbolic Catenoid with Handle
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Figure 8.13: Hyperbolic Catenoid with Handles



Chapter 9

Computation of Hyperbolic
Minimal Surfaces

For the numerical computation of the minimal surfaces in this work we used a
minimization algorithm developed by Pinkall and Polthier [27] for discrete sur-
faces in R?, S3, and H3. We will give a short overview of the general principles
of this algorithm, but refer for all proofs, all related material and further details
to [27].

9.1. THE MINIMIZATION ALGORITHM

A discrete surface in a three dimensional space form is defined to be a topological
simplicial complex consisting of triangles. For this definition and that of maps
between such surfaces we use the embedding of the space form in a linear space
as in chapter 1. Such a surface is then defined by its vertices, and the interior
of each triangle is identical to the span of its three vertices w.r.t. the ambi-
ent vector space structure. Discrete surfaces are called area-minimizing iff small
pertubations of a set of surface vertices would increase the total area. We now
construct a minimizing sequence { M;} of discrete surface. In principle we fix the
combinatorial type of the triangulation, but in practice we adaptivly refine the
triangulation w.r.t. a discrete curvature function defined on the surface. For the
algorithm we use the following minimization step:

Algorithm: Given a boundary contour I and a discrete surface M; in H® CR}
we compute the next surface M;,; as the minimizer of the Dirichlet functional

.1
Migs =mjp s [ 1907 Mi = M),

where f is piecewise linear on all triangles of M; and M is of the same combina-
torial type as M;. Then use M;;1 as a domain and minimize again.

Pay attention to the fact that we do not use a planar two-dimensional domain
but instead the most recent computed surface M;. The used metric on M; and in
image space is the lorentzian metric in our case. Numerically we are left within
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each step with a linear problem of computing the surface M;,; where the mini-
mum of the quadratic function is attained. This minimization method is faster
than the other algorithms since it has no non-linear steps. During each step the
area of the image surface is less than the area of the domain surface. Since we
always step to the absolute minimum of the Dirichlet integral in each iteration
and do not move along the area gradient we proceed discrete also in time direction.

9.2. BOUNDARY TYPES

The algorithm respects different boundary types. A fixed boundary remains as
it is during all minimization steps. A straight line, i.e. a hyperbolic geodesic
being part of the boundary, indicates the algorithm that its boundary vertices
may vary their position on the straight line. The third boundary type is a planar
symmetry arc. In this case all boundary points may vary on the plane defined
by the planar arc, therefore allowing the specification of free boundary value
problems in hyperbolic space.

Handling boundary arcs in such different ways allows us to continue the min-
imized surfaces as discrete minimal surfaces along their boundary symmetry arcs
by reflection. Such a continued surface will also be minimal along the reflection
line.

In the two example sessions the infinite part of the initial surfaces were set
to be fixed. The finite boundary parts of the examples whose existence proof
uses the conjugate surface construction are generally symmetry arcs restricted to
planes, i.e. free boundary value problems. Since we computed the minimum of
the area, fundamental parts of these surfaces are therefore stable. This has to be
seen in contrast to the fact, that in general the conjugate of a minimizing surface
need not be minimizing again, it may be an instable minimal surface.
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