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Abstract

We present a new algorithm for fairing of space curves
with respect spatial constraints based on a vector valued
curvature function. Smoothing with the vector valued cur-
vature function is superior to standard Frenet techniques
since the individual scalar components can be modeled sim-
ilar to curvature-based curve smoothing techniques in 2d.
This paper describes a curve smoothing flow that satisfies
strict spatial constraints and allows simultaneous control
of both curvature functions.

1. Introduction

In most design and construction processes, 3d curves
with smooth curvature distributions are needed. A feature
line on a CAD surface must have smooth curvature for aes-
thetic reasons. In the design of free-form curves, smooth
curvature is a main goal for the same reason. For the con-
struction of patch layouts of scanned surfaces, the smooth-
ness of the boundary curves of patches is essential for the
smoothness of the patches themselves. Most curves are ini-
tially noisy though, coming from a reverse engineering pro-
cess, or as the result of manual modeling. Industrial appli-
cations will normally impose that the smoothed curves must
lie within a certain tolerance to the initial curve or the un-
derlying mesh. Therefore, finding a smoothing algorithm
that satisfies spatial constraints while smoothing the curva-
ture of the curve is essential.

This paper addresses the demand for high quality cur-
vature of 3d curves with spatial constraints. The presented
algorithm is an to space curves extension of the 2d curva-
ture smoothing flow (CS-flow) which was successfully ap-
plied to planar curves in [6]. The extension to 3d curves
in space has to control two curvature distributions simulta-
neously, namely the components of the complex curvature.
This paper provides the extended smooth formulation of the
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3d CS-flow, its discretization and the smoothing algorithm
that satisfies spatial constraints.

1.1. Related Work

Geometric flows are a basic tool for geometry process-
ing. Especially for smoothing and denoising of geome-
tries, flows like the curve shortening flow for curves and the
mean curvature flow for surfaces are standard approaches.
In recent years the focus has shifted towards higher or-
der flows due to their superior smoothing properties. Spe-
cial attention is drawn to curve diffusion flow (resp. sur-
face diffusion flow), the Bi-Laplace flow, and elastic energy
[3,4,1,13,12].

The construction of smooth curves that respect spatial
constraints is a delicate task. Though spatial constraints fre-
quently appear in industrial applications, only few methods
have been proposed. To our knowledge only the method
by Hofer and Pottmann [8] has been proposed that allows
to smooth curves in R? with respect to spatial constraints.
They propose an algorithm for energy minimizing splines
in manifolds and apply it to compute energy minimizing
splines in the presence of obstacles. The idea is to increment
the dimension of the ambient space and then to model the
obstacles as plateaus. There is a smooth transition between
the obstacles and the remaining space, that gets thinner dur-
ing the energy minimization. For fairing of planar curves
with spatial constraints other methods have been suggested,
e.g. the spline based methods in [11, 5, 10].

1.2. Contributions

The paper introduces a new algorithm for the smoothing
of 3d curves with given strict spatial constraints. The flow
is driven by carefully chosen target curvatures which evolu-
tionary improves the curve smoothing while simultaneously
ensuring strict spatial constraints. The paper contributes a
discrete complex curvature which describes the bending of
a polygonal curve in 3d with respect to a rotation minimiz-
ing frame along the curve, a curve fairing algorithm based
on smoothed target curvatures to steer the curve evolution,



3d Curvature Smoothing Flow

Given a polygon with vertices p;. Iterate:

1. Compute rotation min. frame (¢, 77, n3), curva-
ture vector K and vector valued curvature x..

2. Compute smoothed vector valued curvature s
and curvature vector K° = kiny + k5na.

3. Determine step size 7.

4. For each vertex p; set
pi — pi + 7 (R(pi) — £°(pi))

Table 1. Discretized CS-flow for space curves.

and the incorporation of spatial constraints for the curve in
the target curvature.

The curve fairing algorithm is an extension of the 2d
curve fairing algorithm [6].

1.3. Paper Overview

In Section 2 we present the extension of the curvature
smoothing flow to curves in R3. The discretization of this
flow, given in Section 3, uses a discretization of rotation
minimizing frames and a corresponding vector valued cur-
vature. In Section 4 we adjust the curvature smoothing flow
to satisfy spatial constraints. This flow is then applied to a
variety of curves from CAD applications in Section 5.

2. Smoothing Curvature

Curvature smoothing flow (CS-flow) is a class of flows
which couple two processes, first a procedure that at each
point in time computes a smoothed curvature x° from the
curvature ~ of the actual curve and second a flow that
evolves the curve to its normal direction with a velocity de-
pending on the difference of x and x°. This construction
allows to design smoothing flows of curves and to adjust
the flows to specific needs by specifying a smoothing pro-
cedure for the curvature of the curve. For example, in [6]
a CS-flow for planar curves is described that restricts the
evolving curve to satisfy given spatial constraints.

In this section we first review the curvature smoothing
flow for planar curves and then extend the flow to curves
in R3. The construction of a CS-flow that evolves space
curves within user defined spatial constraints is described
in Section 4.

2.1. Review of CS-Flow of Planar Curves

The curvature smoothing flow of a planar curve is given
by:

Definition 1 (2d CS-Flow) Let c(-,t)¢>0 : I = [a,b] —
R? be a family of smooth planar curves, and let (-, t) and
N (-, t) denote the curvature and the normal of c. The family
c evolves under curvature smoothing flow if

d S
Ec(w,t) = (k(z,t) — k°(x,t)) N(z,t) v €I, t>0

c(x,0) =co(x) z €T ()

where cg is an initial curve and ° is a user defined curva-
ture evolution chosen to control the smoothing process.

A simple example of a smoothing process for & is to set

using the smoothing properties of the Laplace operator. In-
serting (2) to (1) shows that the resulting flow is the curve
diffusion flow that is well know for its excellent smoothing
properties, see [3, 13, 4, 1].

2.2. CS-Flow of Curves in R3

For a planar curve the normal space at each point has di-
mension 1 and consequently smoothing the curvature vector
in the normal bundle can be described as smoothing a func-
tion along the curve. For curves in R? this is more involved
since the smoothing process not only changes the length of
the vector but also rotates it in the normal bundle of the
curve.

Let {t, 711,72} be an orthogonal unit frame {, 7,72}
along a curve with tangent vector ¢. The curvature vector
can be decomposed as with respect to this frame,

R = K111 + Kana, 3)

where k; = (R, ;). The components «; depend heavily on
the choice of the frame, e.g. we can choose a frame such
that the ; have arbitrary strong oscillations. The adequate
choice of a frame here is a parallel frame (or rotation mini-
mizing frame), since this frame has no inner rotations. With
respect to the parallel frame the pair . = (1, k2)? is called
the complex curvature. For an introduction to frames and
curvature of space curves see [2] and for the rotation mini-
mizing property of the parallel frame see [9].

Using a parallel frame, smoothing the curvature vector in
the normal bundle amounts to smoothing the «; as functions
on the curve. This leads to the following definition of the
CS-flow for curves in R?
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Figure 1. Feature lines on part of a screw
driver, smoothed with the constraint CS-flow.
Top row: The original lines created automati-
cally by a feature detection algorithm [6] carry
high frequency noise. Bottom row: CS-flow
with e-constraint was used for the smooth-
ing process to prohibit large deviations of
the smoothed lines from the original surface.
The plots show the scalar curvature |~.| of the
curves.

Definition 2 (3d CS Flow) Let c(-,t)i>0 : I = [a,b] —
R3 be a family of smooth space curves and let k.(-,t) =
(k1(-,1), ko, 1))t and {#(-, 1), 711 (-, t), Fia(-, 1)} denote the
vector valued curvature and corresponding parallel frame

of ct. The curve c evolves according to curvature smoothing
flow if

+ (k2(z,t) — K3 (z, )3 (2, t)

c(x,0) = co(x) 4)

where Kk = (K, k3)*
of the curve.

is an evolution of complex curvature

For example, the curve diffusion flow for planar curves
given in equation (2) extends to the case of curves in R? by

kS3(z,t) = ke(m,t) — (Aky (2, 1), Aka(z,t))". (5)

Note that for planar curves in R? the 3d CS-flow reduces to
the 2d case.

3. Discretization of the Flow

We discretize the flow in two steps. First, a spatial dis-
cretization based on finite elements and second a time dis-
cretization by an explicit Euler scheme. The time discretiza-
tion will be carried out in Section 5.

For the spatial discretization we use polygonal curves.
Such a curve is represented as an ordered list of vertices

(Po, - -.,Pm), and edges e; = p;i11 — p;.

Definition 3 (Discrete curvature vector) The discrete

curvature vector & of ¢ is defined at each vertex by

. 2 e; €i—1 )
R(p) = - [ o = L ©6)
®s) = o o] <|ez-| fer]

and linear interpolation between the vertices.

For a smooth curve the curvature vector equals the Laplace
operator of the embedding of the curve. The discrete cur-
vature vector is based on a finite element approximation of
the Laplace operator.

Discrete parallel frame. A parallel frame for a smooth
curve is described by specifying a frame at one point of the
curve. The frame along the curve is then uniquely defined
by the rotation minimizing property of the parallel frame.
The computation involves solving a system of differential
equation, cp. [9].

A discrete frame of a polygonal curve is given by a set
of three orthonormal vectors {t_', fi1, 72} at each vertex p;.
Here the vector ¢ is a unit vector pointing to the tangent
direction. We set

o € €i—1
tpi) = (— + ——
v = (1 + o)/

€ €i—1

lei|  lei-1]

’ (N

for all vertices p; of the curve c. Then &(p;) is orthogonal to
the discrete curvature vector Z(p;) and in the plane spanned
by e; and e;_; for all p;.

The discrete parallel frame is constructed analog to the
smooth case. We specify the frame at a single vertex p;,
determines the discrete parallel frame on the whole curve.
For all other vertices is the frame generated by iterating
through the vertices, constructing the frame at a vertex
pi+1 from the frame at the preceding vertex p;. The frame
{{(pi-i-l)a 1 (pi+1), M2 (pi+1)} at pi41 is computed by ro-
tating the frame {¢(p;), 7i1 (i), ia(p;) } at p; around the axis
t(p;) x t(pi41), such that the vector t(p;) is mapped onto

Hpisa)-
Note that (similar to the smooth case) the parallel frame
of a closed curve does not necessarily close up. If we start



Figure 3. Smoothing of a curve of a patch lay-
out. The curve in the middle has a bump, visi-
ble in the curvature plot. Smoothing removes
the bump. The 3d c-constraint is shown in
gray around the curve.

the construction of the parallel frame with a frame at vertex
Po, we might arrive at py with a different frame after go-
ing once around the curve. If the smoothing method used
for k. in the CS-flow is a local one, this poses no problem,
since locally the rotation minimizing frame is well-defined.
Otherwise, we approximate such a frame by uniformly dis-
tributing the difference rotation angle of the two frames at
po over the whole curve.

Once the discrete curvature vector and the discrete par-
allel frame is known, the definition of the discrete complex
curvature is straight forward.

Definition 4 (Discrete complex curvature) Let ¢ be a
polygonal curve and {t_: i1, 7o} a discrete parallel frame
on c, then for a vertex p of c the discrete complex curvature

atpis ke(p) = (k1(p), k2(p))* with ri(p) = (R(p), 71:(p))-

4. Evolution of Space Curves with Constraints

In most industrial applications the smoothed curve must
be in a small neighborhood of the original curve. Otherwise
the resulting workpiece might no longer be suitable for the
application, e.g. it might no longer fit to other pieces. We
consider the following type of e-constraint:

Given a starting curve co and a maximal acceptable devi-
ation € from this curve. Let Q C R? be the set of points
xr € R? with dist(z,cp) < e. Constrain the family of
curves ¢; such that they lie inside 2 for all ¢.

In this section we will incorporate these constraints to
the curvature smoothing flow described in the previous sec-
tion. The extension to more complex constraints €2 is rather
straight forward. The method allows to include other re-
quirements that applications may impose, for example, in-
terpolation of some given points are easily realized as well.

Incorporating constraints. In each step of the iterative in-
tegration method, we can compute from the 3d flow equa-
tion (4) the admitted values for 7 at every vertex such that
the curve stays within the e-constraints. The new vertex
position lies in the constraints if dist(¢(p;) + (k1(pi) —
K1 (pi))na(pi) + (K2(pi) — K5(pi))n2(pi), co) < €. A cur-
vature distribution x; that fulfills these constraints is com-
puted in each step of the smoothing process. Like in the
2d case, we reduce the complexity of this problem by pre-
scribing k¢ = k. at points that lie on the boundary of €2,
so these points do not move, and choosing a stepsize such
that vertices do not leave the constraint (but may touch the
boundary). At regular intervals we check, whether a ver-
tex moves away from the boundary if we do not force the
interpolation k2 = k. there.

Computing smoothed complex curvature. Since k. is
smooth if its components are smooth, we consider the two
components independently. Similar to the 2d case, we want
to avoid behavior changes of the curve. A curve with curva-
ture that linearly interpolates the prescribed values has only
the necessary change in curvature to satisfy the constraints.
To achieve a similar quality with smooth curvature, we de-
mand that the smoothed curvature between two prescribed
values has its only maximum and minimum at these pre-
scribed values. The approximation scheme that was used
for the 2d CS-flow with constraints has this property, so we
construct a smooth curvature by filling the intervals between
the prescribed curvature values with Bézier segments, sep-
arately for both components ;.

Let x; denote the curve parameters of the prescribed
curvature values, i.e. #;(z;) has to be interpolated. We
choose the tangent direction of the Bézier segment at x; as
(Ii+1 — Xi—1, Ry (Ii+1) — Ky (Iifl)), if this this lies in the
bounding boxes spanned by the preceding and succeeding
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Figure 2. 3-dimensional design curves with c-constraint that were smoothed with the CS-flow with
constraint from this paper. These curves are outlines of different workpieces, created by a designer
with a CAD-application. The images show the smoothed curve with the constraint in gray, and, in
the rows below, the components «; and «- of the vector valued curvature of the original curve (first
row) and of the smoothed curve (second row).



vertex. Otherwise we choose a horizontal tangent direc-
tion. We set the length of the tangent such that the control
points lie in the bounding box and the Bézier segment is
the graph of a function over x. If there are no prescribed
values, i.e. the curve does not touch the boundary of the
constraint anywhere, we use the mean value and set for all

x k3 (w,t) = m th kj(s,t)ds .
5. Experimental Results

In our experiments we use an explicit Euler scheme
for the integration of the curvature smoothing flow. The
usual estimate for a secure step-size for the Laplace flow
is 7 < (\/||A]l1]]Al|oc) !, where A is the matrix repre-
senting the discrete Laplace operator of the current curve.
To maximize the possible stepsize we discretize the curves
equidistantly before integrating the flow. We use a multi-
level scheme to accelerate smoothing of curves with many
vertices. The only difficulty is to take care that the curve still
lies in 2 when switching between different levels of detail,
i.e. when switching to a coarser level, we may not remove
vertices if the resulting edge does not satisfy the constraints.

Patch layout. In the first example (Figure 3), we took the
boundary curves of a patch layout of a surface in 3d, that
was created by CAD-professionals. Figure 3 shows three
of these curves, that are parallel on the surface. They are
stronger curved in the middle, and less curved in the ends.
The scalar curvature || of the curve in the middle has an
unwanted bump. We removed the bump, applying the con-
straint CS-flow to this curve, with an e-constraint of 0.2 mm
(which is about 0.3% of the length of the curve) and fixed
endpoints.

Design curves. The second example in Figure 2 shows
two 3d-outlines of workpieces from a car, created by a de-
signer with a CAD-application. The original curves have
noise, due to the inaccuracies of the design process. The
e-constraint is set by the designer, such that the behavior of
the curve remains the same as the desired behavior. There-
fore the constraint will normally be rather tight. The CS-
flow with constraints creates a curve with nicely shaped
smooth curvature within these constraints.

Feature lines. An example of smoothing feature lines of
a surface is given in Figure 1. Most feature extraction
methods return paths on the surface. These lines naturally
still carry noise. To produce feature lines that are aesthet-
ically looking and directly useful for a CAD-application,
a smoothing process must be applied. An unconstraint
smoothing algorithm would eventually move curves too far
away from the original surface. Therefore, spatial con-
straints are essential. Figure 1 shows feature lines on a
screwdriver, that were computed automatically by the ex-
traction method in [7]. Even though this method already

smooths the operators that are used for the computation of
the feature lines, the feature lines are noisy. The smooth
feature lines were computed automatically from the mesh
by first applying the feature detection method to the sur-
face, and then smoothing all curves with the CS-flow with a
given e-constraint.

6. Conclusion

We have introduced a new fairing algorithm for 3d
curves which strictly satisfies given spatial constraints. The
flow has demonstrated its effectiveness in industrial CAD-
applications. In future work we will extend this flow to the
fairing of curves on 3d surface meshes and the optimization
of surface features.
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